用户名: 密码: 验证码:
Selective Conversion of Glycerol into Propylene: Single-Step versus Tandem Process
详细信息    查看全文
文摘
Dehydration and catalytic cracking reactions can be combined to convert glycerol into light olefins using solid acid catalysts. The combination is suitable for a single-step process to convert glycerol into light olefins at high temperatures (26–36% selectivity at 873 K). However, large quantities of carbon oxides are produced (31–39% COx selectivity), and catalyst deactivation also occurs. High light olefin selectivity (62–65%) and a smaller quantity of carbon oxides (11–12% COx selectivity) can be obtained by using a tandem process involving the dehydration of glycerol and subsequent catalytic cracking of the dehydration products (mainly acetol and acrolein). Furthermore, the ratio of propylene to ethylene can be adjusted by changing the dehydration catalysts to favor the production of acetol or acrolein: Acetol forms propylene, and acrolein forms ethylene. To overcome the fast deactivation of acid catalysts in glycerol dehydration, the hydrogenolysis and catalytic cracking reactions can be synchronized to convert glycerol into hydrocarbons using a combination of metal and acid catalysts. The single-step conversion of glycerol over a metal or bifunctional catalyst formed alcohols and paraffin. The highest selectivity for propylene production (approximately 76%) was obtained in a tandem process via the selective hydrogenolysis of glycerol to propanols over Pt/ZSM-5 catalysts followed by the catalytic dehydration/cracking of propanols to propylene over ZSM-5 catalysts at low temperatures (523 K). The selectivity for propylene was improved by increasing the Si/Al ratio of the ZSM-5 catalysts and the reaction time. Under these conditions, economically competitive crude glycerol (mainly mixtures of glycerol and methanol) can be used to synthesize light olefins (approximately 61% selectivity) with a long lifetime (∼500 h) in single-route reactions by increasing the cracking temperature to 773 K, which is suitable for practical methanol to propylene process.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700