用户名: 密码: 验证码:
Dynamic Self-Stiffening and Structural Evolutions of Polyacrylonitrile/Carbon Nanotube Nanocomposites
详细信息    查看全文
文摘
The self-stiffening under external dynamic strain has been observed for some artificial materials, especially for nanocomposites. However, few systematic studies have been carried out on their structural evolutions, and the effect of the types of nanofillers was unclear. In this study, we used a semicrystalline polymer, polyacrylonitrile (PAN), and various types of carbon nanomaterials including C60, carbon nanotube (CNT), and graphene oxide (GO). An external uniaxial dynamic strain at small amplitude of 0.2% was applied on the prepared nanocomposite films. It was observed that PAN/CNT exhibited significant self-stiffening behavior, whereas PAN/GO showed no response. Systematic characterizations were performed to determine the structural evolutions of PAN/CNT film during dynamic strain testing, and it was found that the external dynamic strain not only induced the crystallization of PAN chains but also aligned CNT along the strain direction.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700