用户名: 密码: 验证码:
A Virus-Mimicking, Endosomolytic Liposomal System for Efficient, pH-Triggered Intracellular Drug Delivery
详细信息    查看全文
  • 作者:Siyuan Chen ; Rongjun Chen
  • 刊名:ACS Applied Materials & Interfaces
  • 出版年:2016
  • 出版时间:August 31, 2016
  • 年:2016
  • 卷:8
  • 期:34
  • 页码:22457-22467
  • 全文大小:609K
  • 年卷期:0
  • ISSN:1944-8252
文摘
A novel multifunctional liposomal delivery platform has been developed to resemble the structural and functional traits of an influenza virus. Novel pseudopeptides were prepared to mimic the pH-responsive endosomolytic behavior of influenza viral peptides through grafting a hydrophobic amino acid, l-phenylalanine, onto the backbone of a polyamide, poly(l-lysine isophthalamide), at various degrees of substitution. These pseudopeptidic polymers were employed to functionalize the surface of cholesterol-containing liposomes that mimic the viral envelope. By controlling the cholesterol proportion as well as the concentration and amphiphilicity of the pseudopeptides, the entire payload was rapidly released at endosomal pHs, while there was no release at pH 7.4. A pH-triggered, reversible change in liposomal size was observed, and the release mechanism was elucidated. In addition, the virus-mimicking nanostructures efficiently disrupted the erythrocyte membrane at pH 6.5 characteristic of early endosomes, while they showed negligible cytotoxic effects at physiological pH. The efficient intracellular delivery of the widely used anticancer drug doxorubicin (DOX) by the multifunctional liposomes was demonstrated, leading to significantly increased potency against HeLa cancer cells over the DOX-loaded bare liposomes. This novel virus-mimicking liposomal system, with the incorporated synergy of efficient liposomal drug release and efficient endosomal escape, is favorable for efficient intracellular drug delivery.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700