用户名: 密码: 验证码:
Control over Different Crystallization Stages of CaCO3-Mediated by Silk Fibroin
详细信息    查看全文
文摘
The crystallization process of CaCO3-mediated by the addition of silk fibroin at different crystalline stages was examined. During earlier stages of crystallization, time-resolved transmission electron microscopy (TEM) was applied to demonstrate that the crystallization of an amorphous precursor was based on randomly oriented domains. Different addition times of silk fibroin primarily led to two kinds of morphology of CaCO3, that is, lens-like and multilayered vaterite. Additionally, the thickness or number of layers of such vaterite would increase with the delay of silk fibroin addition, ascribing to the control of silk fibroin over different basic units during the aggregation and reorientation process. It was found that those squeezed-out silk fibroins, which probably resulted from the relatively weak interaction between silk fibroin chains and (001) plane of vaterite phase during the crystallization process could lead to the formation of oblate aggregates via vectorial assembly of units with consistent orientation (nanoparticle for lens-like vaterite or flake for layered vaterite) and inhibition to the growth of (001) faces of fused intermediates. For comparison, the crystallization process of CaCO3 regulated by poly (acrylic acid) (PAA) was observed by cryoSEM, presenting a 鈥渟tepwise aggregation鈥?pathway to form spherical polycrystals which may be attributed to strong electrostatic interaction between carboxyl groups in PAA chains and nanoparticles. Therefore, the extent of binding affinity between organic and inorganic substances was proposed to be relevant to the reconstructuring process and the morphologies of final product.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700