用户名: 密码: 验证码:
Effect of Superacidic Side Chain Structures on High Conductivity Aromatic Polymer Fuel Cell Membranes
详细信息    查看全文
文摘
Proton-conducting superacidic polymer membranes with different fluoroalkyl sulfonate pendants attached to aromatic polymer backbones were synthesized via C鈥揌 functionalization and Suzuki coupling reactions. Variation in the chemical structures of the pendant acidic sulfonate moieties and their effects on membrane properties including water uptake, ion exchange capacity, morphology, and proton conductivity were systemically investigated. Membranes containing the short 鈭扥CF2SO3H pendant (PSU-S5) showed a smaller hydrophilic domain size and lower proton conductivity than those containing the longer pendants 鈭扥CF2CF2SO3H (PSU-S1) and 鈭扴CF2CF2SO3H (PSU-S4), likely due to the short chain鈥檚 less favorable aggregation and lower acidity. Polymer electrolyte membranes with unique branched fluoroalkyl sulfonate pendants (PSU-S6) gave larger ionic domain sizes, more uniform hydrophilic channels, and higher proton conductivity than samples with analogous linear pendant chains (PSU-S1), indicating that branched sulfonate structures may be a key future direction in the field of fuel cell membrane.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700