用户名: 密码: 验证码:
High-Performance and Stable Gel-State Dye-Sensitized Solar Cells Using Anodic TiO2 Nanotube Arrays and Polymer-Based Gel Electrolytes
详细信息    查看全文
文摘
Highly ordered and vertically oriented TiO2 nanotube (NT) arrays were synthesized with potentiostatic anodization of Ti foil and applied to fabricate gel-state dye-sensitized solar cells (DSSCs). The open structure of the TiO2 NT facilitates the infiltration of the gel-state electrolyte; their one-dimensional structural feature provides effective charge transport. TiO2 NTs of length L = 15鈥?5 渭m were produced on anodization for periods of t = 5鈥?5 h at a constant voltage of 60 V, and sensitized with N719 for photovoltaic characterization. A commercially available copolymer, poly(methyl methacrylate-co-ethyl acrylate) (PMMA-EA), served as a gelling agent to prepare a polymer-gel electrolyte (PGE) for DSSC applications. The PGE as prepared exhibited a maximum conductivity of 4.58 mS cm鈥? with PMMA-EA (7 wt %). The phase transition temperature (Tp) of the PGE containing PMMA-EA at varied concentrations was determined on the basis of the viscosities measured at varied temperatures. Tp increased with increasing concentration of PMMA-EA. An NT-DSSC with L = 30 渭m assembled using a PGE containing PMMA-EA (7 wt %) exhibited an overall power conversion efficiency (PCE) of 6.9%, which is comparable with that of a corresponding liquid-type device, PCE = 7.1%. Moreover, the gel-state NT-DSSC exhibited excellent thermal and light-soaking enduring stability: the best device retained 鈭?0% of its initial efficiency after 1000 h under 1 sun of illumination at 50 掳C, whereas its liquid-state counterpart decayed appreciably after light soaking for 500 h.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700