用户名: 密码: 验证码:
Hyperbranched Self-Immolative Polymers (hSIPs) for Programmed Payload Delivery and Ultrasensitive Detection
详细信息    查看全文
文摘
Upon stimuli-triggered single cleavage of capping moieties at the focal point and chain terminal, self-immolative dendrimers (SIDs) and linear self-immolative polymers (l-SIPs) undergo spontaneous domino-like radial fragmentation and cascade head-to-tail depolymerization, respectively. The nature of response selectivity and signal amplification has rendered them a unique type of stimuli-responsive materials. Moreover, novel design principles are required for further advancement in the field of self-immolative polymers (SIPs). Herein, we report the facile fabrication of water-dispersible SIPs with a new chain topology, hyperbranched self-immolative polymers (hSIPs), by utilizing one-pot AB2 polycondensation methodology and sequential postfunctionalization. The modular engineering of three categories of branching scaffolds, three types of stimuli-cleavable capping moieties at the focal point, and seven different types of peripheral functional groups and polymeric building blocks affords both structurally and functionally diverse hSIPs with chemically tunable amplified-release features. On the basis of the hSIP platform, we explored myriad functions including visible light-triggered intracellular release of peripheral conjugated drugs in a targeted and spatiotemporally controlled fashion, intracellular delivery and cytoplasmic reductive milieu-triggered plasmid DNA release via on/off multivalency switching, mitochondria-targeted fluorescent sensing of H2O2 with a detection limit down to 鈭?0 nM, and colorimetric H2O2 assay via triggered dispersion of gold nanoparticle aggregates. To further demonstrate the potency and generality of the hSIP platform, we further configure it into biosensor design for the ultrasensitive detection of pathologically relevant antigens (e.g., human carcinoembryonic antigen) by integrating with enzyme-mediated cycle amplification with positive feedback and enzyme-linked immunosorbent assay (ELISA).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700