用户名: 密码: 验证码:
Synchronization between Kinetic Oscillations Occurring on Neighboring Nanoscaled Supported Platinum Clusters via Thermal Conduction
详细信息    查看全文
文摘
Monte Carlo technique is applied to simulate the synchronization between neighboring kinetic oscillators of nanoscaled supported platinum particles. Non-isothermal kinetics caused by local overheating provides an extra thermal conduction channel for synchronization between oscillators. Kinetic oscillation is produced when fast carbon monoxide oxidation is accompanied with slow subsurface oxygen formation and removal. Different effects are investigated on synchronization, including thermal conduction efficiency, heat dissipation efficiency, and distance between the two oscillators. Decreasing thermal conduction efficiency isolates each kinetically oscillating catalyst and results in complicated oscillation patterns. Heat dissipation has the opposite influence on synchronization comparing to thermal conduction. Low heat dissipation from the substrate to the environment maintains the temperature of the system and thus promotes synchronization. In addition, synchronization is destroyed when the distance between two oscillating particles becomes several-fold longer than the platinum particle size.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700