用户名: 密码: 验证码:
High-Efficiency Mechanical Energy Storage and Retrieval Using Interfaces in Nanowires
详细信息    查看全文
文摘
By molecular dynamics simulations, we demonstrate a new concept for mechanical energy storage and retrieval using surface energy as reservoir in body-centered cubic (bcc) tungsten nanowire, achieving a combination of unique features such as large and constant actuation stress (>3 GPa), exceptionally large actuation strain (>30%) and energy density, and >98% energy storage efficiency. The underlying mechanism is a shear-dominant diffusionless transformation akin to martensitic transformation, but driven by surface rather than bulk free energies, and enabled by motion of coherent twin boundary, whose migration has been shown to possess ultralow friction in bcc metals. Aside from energy storage, such surface-energy driven displacive transformations are important for phase transformation and energy-matter control at the nanoscale.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700