用户名: 密码: 验证码:
A Switch of the Oxidation State of Graphene Oxide on a Surface Plasmon Resonance Chip
详细信息    查看全文
文摘
Controlling the assembly and manipulating the oxidation state of graphene nanosheets on surfaces are of essential importance for application of graphene-related optical and biosensing devices. In this study, we assemble a graphene oxide (GO) film on a surface plasmon resonance chip surface and then convert it to reduced graphene by an in situ electrochemical method. The mechanism and application of surface-enhanced Raman spectroscopy and DNA sensing from graphene-based substrates are investigated. The average thickness and dielectric constant of GO are varied significantly with the switch of its oxidation state. Electrochemical reduction decreases the distance between carbon atoms and the gold surface by removing the spacer of oxygen functional groups. The electromagnetic field of the graphene surface is therefore enhanced, resulting in an enhancement of the Raman signal. A p doping of electrochemically reduced GO (ERGO) that occurred from changes in the graphene electronic structure through interaction between gold and ERGO is also observed during electrochemical reduction. The GO and ERGO substrates perform different interaction abilities with single- and double-stranded DNA. This work may be valuable for graphene-related research works on optoelectronics and biosensors.

Keywords:

graphene oxide; surface plasmon resonance; SERS; electrochemical reduction; DNA binding

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700