用户名: 密码: 验证码:
Multicolor-Encoded Reconfigurable DNA Nanostructures Enable Multiplexed Sensing of Intracellular MicroRNAs in Living Cells
详细信息    查看全文
文摘
Despite the widespread utilization of gold nanoparticles and graphene for in vivo applications, complex steps for the preparation and functionalization of these nanomaterials are commonly required. In addition, the cytotoxicity of such materials is currently still under debate. In this work, by taking the significant advantages of DNA in terms of biocompatibility, nontoxicity, and controllability as building blocks for DNA nanostructures, we describe the construction of a reconfigurable, multicolor-encoded DNA nanostructure for multiplexed monitoring of intracellular microRNAs (miRNAs) in living cells. The DNA nanostructure nanoprobes containing two fluorescently quenched hairpins can be obtained by simple thermal annealing of four ssDNA oligonucleotides. The presence of the target miRNAs can unfold the hairpin structures and recover fluorescent emissions at distinct wavelengths to achieve multiplexed detection of miRNAs. Importantly, the DNA nanostructure nanoprobes exhibit significantly improved stability over conventional DNA molecular beacon probes in cell lysates and can steadily enter cells to realize simultaneous detection of two types of intracellular miRNAs. The demonstration of the self-assembled DNA nanostructures for intracellular sensing thus offers great potential application of these nanoprobes for imaging, drug delivery and cancer therapy in vivo.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700