用户名: 密码: 验证码:
Nanochimneys: Topology and Thermal Conductance of 3D Nanotube–Graphene Cone Junctions
详细信息    查看全文
文摘
Pillared 3D carbon architectures, with the graphene layers and carbon nanotubes connected by topological junctions, have been produced and observed, as reported recently. However, the atomistic details of such junctions are hard to discern in microscopy and remain presently unclear. The simplest junction contains six heptagons in the transition region between the nanotube and graphene. Although these junctions make the pillared architectures possible, they are susceptible to failure when the whole structure undergoes mechanical or thermal stress. In this work we consider “nanochimneys”, a variety of special junctions with cones in between the nanotube and graphene parts. We explore the structures of the nanochimneys (NCs) and determine their underlying topological requirements. We also study the thermal conductance of these pillared architectures and show that NCs conduct heat better than regular simple junctions.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700