用户名: 密码: 验证码:
Molecule-like CdSe Nanoclusters Passivated with Strongly Interacting Ligands: Energy Level Alignment and Photoinduced Ultrafast Charge Transfer Processes
详细信息    查看全文
文摘
Semiconductor nanoclusters (SCNCs) are promising electronic materials for use in solid-state device fabrication, where device efficiency is strongly controlled by charge generation and transfer from SCNCs to their surroundings. In this paper we report the excited-state dynamics of molecule-like 1.6 nm diameter CdSe SCNCs, which are passivated with the highly conjugated ligand phenyldithiocarbamate. Femtosecond transient absorption studies reveal subpicosecond hole transfer (蟿 鈮?0.9 ps) from a SCNC to its ligand shell based on strong electronic interaction and hole delocalization, and subpicosecond hot electron transfer (蟿 鈮?0.2 ps) to interfacial states created by charge separation. A series of control experiments were performed by varying SCNC size (1.6 nm vs 2.9 nm) and photon energy of the pump laser (388 nm vs 490 nm) as well as addition of electron quencher (benzoquinone) and hole quencher (pyridine), which rules out alternative mechanisms and confirms the critical role of energy level alignment between the SCNC and its passivating ligands. Understanding such charge carrier transfer dynamics across the SCNC鈥搊rganic molecule interface is very important to various physical phenomena such as hot carrier relaxation and multiple exciton generation, which together could aid in the design of high-efficiency solar cells and photocatalysts.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700