用户名: 密码: 验证码:
Relating gene expression evolution with CpG content changes
详细信息    查看全文
  • 作者:Huan Yang (24)
    Dawei Li (25)
    Chao Cheng (26) (27)

    24. Department of Gynecology
    ; The Ninth People鈥檚 Hospital of Chongqing ; Chongqing ; 400700 ; China
    25. Department of Microbiology and Molecular Genetics
    ; College of Medicine ; Burlington ; VT ; 05405 ; USA
    26. HB7400
    ; Remsen 702 ; Department of Genetics ; Geisel School of Medicine at Dartmouth ; Hanover ; NH ; 03755 ; USA
    27. Institute for Quantitative Biomedical Sciences
    ; Norris Cotton Cancer Center ; Geisel School of Medicine at Dartmouth ; Lebanon ; NH ; 03766 ; USA
  • 刊名:BMC Genomics
  • 出版年:2014
  • 出版时间:December 2014
  • 年:2014
  • 卷:15
  • 期:1
  • 全文大小:1,380 KB
  • 参考文献:1. Bird, AP (1980) DNA methylation and the frequency of CpG in animal DNA. Nucleic Acids Res 8: pp. 1499-1504 CrossRef
    2. Duncan, BK, Miller, JH (1980) Mutagenic deamination of cytosine residues in DNA. Nature 287: pp. 560-561 CrossRef
    3. Jones, PA, Takai, D (2001) The role of DNA methylation in mammalian epigenetics. Science 293: pp. 1068-1070 CrossRef
    4. Fazzari, MJ, Greally, JM (2004) Epigenomics: beyond CpG islands. Nat Rev Genet 5: pp. 446-455 CrossRef
    5. Sved, J, Bird, A (1990) The expected equilibrium of the CpG dinucleotide in vertebrate genomes under a mutation model. Proc Natl Acad Sci U S A 87: pp. 4692-4696 CrossRef
    6. Yoder, JA, Walsh, CP, Bestor, TH (1997) Cytosine methylation and the ecology of intragenomic parasites. Trends Genet 13: pp. 335-340 CrossRef
    7. Lander, ES, Linton, LM, Birren, B, Nusbaum, C, Zody, MC, Baldwin, J, Devon, K, Dewar, K, Doyle, M, FitzHugh, W, Funke, R, Gage, D, Harris, K, Heaford, A, Howland, J, Kann, L, Lehoczky, J, LeVine, R, McEwan, P, McKernan, K, Meldrim, J, Mesirov, JP, Miranda, C, Morris, W, Naylor, J, Raymond, C, Rosetti, M, Santos, R, Sheridan, A, Sougnez, C (2001) Initial sequencing and analysis of the human genome. Nature 409: pp. 860-921 CrossRef
    8. Ponger, L, Duret, L, Mouchiroud, D (2001) Determinants of CpG islands: expression in early embryo and isochore structure. Genome Res 11: pp. 1854-1860
    9. Cohen, NM, Kenigsberg, E, Tanay, A (2011) Primate CpG islands are maintained by heterogeneous evolutionary regimes involving minimal selection. Cell 145: pp. 773-786 CrossRef
    10. Meunier, J, Duret, L (2004) Recombination drives the evolution of GC-content in the human genome. Mol Biol Evol 21: pp. 984-990 CrossRef
    11. Galtier, N, Piganeau, G, Mouchiroud, D, Duret, L (2001) GC-content evolution in mammalian genomes: the biased gene conversion hypothesis. Genetics 159: pp. 907-911
    12. Gardiner-Garden, M, Frommer, M (1987) CpG islands in vertebrate genomes. J Mol Biol 196: pp. 261-282 CrossRef
    13. Saxonov, S, Berg, P, Brutlag, DL (2006) A genome-wide analysis of CpG dinucleotides in the human genome distinguishes two distinct classes of promoters. Proc Natl Acad Sci U S A 103: pp. 1412-1417 CrossRef
    14. Semon, M, Mouchiroud, D, Duret, L (2005) Relationship between gene expression and GC-content in mammals: statistical significance and biological relevance. Hum Mol Genet 14: pp. 421-427 CrossRef
    15. Urrutia, AO, Hurst, LD (2003) The signature of selection mediated by expression on human genes. Genome Res 13: pp. 2260-2264 CrossRef
    16. Versteeg, R, van Schaik, BD, van Batenburg, MF, Roos, M, Monajemi, R, Caron, H, Bussemaker, HJ, van Kampen, AH (2003) The human transcriptome map reveals extremes in gene density, intron length, GC content, and repeat pattern for domains of highly and weakly expressed genes. Genome Res 13: pp. 1998-2004 CrossRef
    17. Landolin, JM, Johnson, DS, Trinklein, ND, Aldred, SF, Medina, C, Shulha, H, Weng, Z, Myers, RM (2010) Sequence features that drive human promoter function and tissue specificity. Genome Res 20: pp. 890-898 CrossRef
    18. Cheng, C, Alexander, R, Min, R, Leng, J, Yip, KY, Rozowsky, J, Yan, KK, Dong, X, Djebali, S, Ruan, Y, Davis, CA, Carninci, P, Lassman, T, Gingeras, TR, Guigo, R, Birney, E, Weng, Z, Snyder, M, Gerstein, M (2012) Understanding transcriptional regulation by integrative analysis of transcription factor binding data. Genome Res 22: pp. 1658-1667 CrossRef
    19. Khaitovich, P, Hellmann, I, Enard, W, Nowick, K, Leinweber, M, Franz, H, Weiss, G, Lachmann, M, Paabo, S (2005) Parallel patterns of evolution in the genomes and transcriptomes of humans and chimpanzees. Science 309: pp. 1850-1854 CrossRef
    20. Liao, BY, Zhang, J (2006) Evolutionary conservation of expression profiles between human and mouse orthologous genes. Mol Biol Evol 23: pp. 530-540 CrossRef
    21. Liao, BY, Zhang, J (2006) Low rates of expression profile divergence in highly expressed genes and tissue-specific genes during mammalian evolution. Mol Biol Evol 23: pp. 1119-1128 CrossRef
    22. Yang, J, Su, AI, Li, WH (2005) Gene expression evolves faster in narrowly than in broadly expressed mammalian genes. Mol Biol Evol 22: pp. 2113-2118 CrossRef
    23. Brawand, D, Soumillon, M, Necsulea, A, Julien, P, Csardi, G, Harrigan, P, Weier, M, Liechti, A, Aximu-Petri, A, Kircher, M, Albert, FW, Zeller, U, Khaitovich, P, Grutzner, F, Bergmann, S, Nielsen, R, Paabo, S, Kaessmann, H (2011) The evolution of gene expression levels in mammalian organs. Nature 478: pp. 343-348 CrossRef
    24. Dermitzakis, ET, Clark, AG (2002) Evolution of transcription factor binding sites in Mammalian gene regulatory regions: conservation and turnover. Mol Biol Evol 19: pp. 1114-1121 CrossRef
    25. Borneman, AR, Zhang, ZD, Rozowsky, J, Seringhaus, MR, Gerstein, M, Snyder, M (2007) Transcription factor binding site identification in yeast: a comparison of high-density oligonucleotide and PCR-based microarray platforms. Funct Integr Genomics 7: pp. 335-345 CrossRef
    26. Odom, DT, Dowell, RD, Jacobsen, ES, Gordon, W, Danford, TW, MacIsaac, KD, Rolfe, PA, Conboy, CM, Gifford, DK, Fraenkel, E (2007) Tissue-specific transcriptional regulation has diverged significantly between human and mouse. Nat Genet 39: pp. 730-732 CrossRef
    27. Pask, AJ, Papenfuss, AT, Ager, EI, McColl, KA, Speed, TP, Renfree, MB (2009) Analysis of the platypus genome suggests a transposon origin for mammalian imprinting. Genome Biol 10: pp. R1 CrossRef
    28. Warren, WC, Hillier, LW, Marshall Graves, JA, Birney, E, Ponting, CP, Grutzner, F, Belov, K, Miller, W, Clarke, L, Chinwalla, AT, Yang, SP, Heger, A, Locke, DP, Miethke, P, Waters, PD, Veyrunes, F, Fulton, L, Fulton, B, Graves, T, Wallis, J, Puente, XS, Lopez-Otin, C, Ordonez, GR, Eichler, EE, Chen, L, Cheng, Z, Deakin, JE, Alsop, A, Thompson, K, Kirby, P (2008) Genome analysis of the platypus reveals unique signatures of evolution. Nature 453: pp. 175-183 CrossRef
    29. Mikkelsen, TS, Wakefield, MJ, Aken, B, Amemiya, CT, Chang, JL, Duke, S, Garber, M, Gentles, AJ, Goodstadt, L, Heger, A, Jurka, J, Kamal, M, Mauceli, E, Searle, SM, Sharpe, T, Baker, ML, Batzer, MA, Benos, PV, Belov, K, Clamp, M, Cook, A, Cuff, J, Das, R, Davidow, L, Deakin, JE, Fazzari, MJ, Glass, JL, Grabherr, M, Greally, JM, Gu, W (2007) Genome of the marsupial Monodelphis domestica reveals innovation in non-coding sequences. Nature 447: pp. 167-177 CrossRef
    30. Dunham, I, Kundaje, A, Aldred, SF, Collins, PJ, Davis, CA, Doyle, F, Epstein, CB, Frietze, S, Harrow, J, Kaul, R, Khatun, J, Lajoie, BR, Landt, SG, Lee, BK, Pauli, F, Rosenbloom, KR, Sabo, P, Safi, A, Sanyal, A, Shoresh, N, Simon, JM, Song, L, Trinklein, ND, Altshuler, RC, Birney, E, Brown, JB, Cheng, C, Djebali, S, Dong, X, Dunham, I (2012) An integrated encyclopedia of DNA elements in the human genome. Nature 489: pp. 57-74 CrossRef
    31. Ozsolak, F, Milos, PM (2011) RNA sequencing: advances, challenges and opportunities. Nat Rev Genet 12: pp. 87-98 CrossRef
    32. Wilhelm, BT, Landry, JR (2009) RNA-Seq-quantitative measurement of expression through massively parallel RNA-sequencing. Methods 48: pp. 249-257 CrossRef
    33. Consortium, EP, Bernstein, BE, Birney, E, Dunham, I, Green, ED, Gunter, C, Snyder, M (2012) An integrated encyclopedia of DNA elements in the human genome. Nature 489: pp. 57-74 CrossRef
    34. Deaton, AM, Bird, A (2011) CpG islands and the regulation of transcription. Genes Dev 25: pp. 1010-1022 CrossRef
    35. Lee, JH, Skalnik, DG (2005) CpG-binding protein (CXXC finger protein 1) is a component of the mammalian Set1 histone H3-Lys4 methyltransferase complex, the analogue of the yeast Set1/COMPASS complex. J Biol Chem 280: pp. 41725-41731 CrossRef
    36. Ramirez-Carrozzi, VR, Braas, D, Bhatt, DM, Cheng, CS, Hong, C, Doty, KR, Black, JC, Hoffmann, A, Carey, M, Smale, ST (2009) A unifying model for the selective regulation of inducible transcription by CpG islands and nucleosome remodeling. Cell 138: pp. 114-128 CrossRef
    37. Mohn, F, Weber, M, Rebhan, M, Roloff, TC, Richter, J, Stadler, MB, Bibel, M, Schubeler, D (2008) Lineage-specific polycomb targets and de novo DNA methylation define restriction and potential of neuronal progenitors. Mol Cell 30: pp. 755-766 CrossRef
    38. Ku, M, Koche, RP, Rheinbay, E, Mendenhall, EM, Endoh, M, Mikkelsen, TS, Presser, A, Nusbaum, C, Xie, X, Chi, AS, Adli, M, Kasif, S, Ptaszek, LM, Cowan, CA, Lander, ES, Koseki, H, Bernstein, BE (2008) Genomewide analysis of PRC1 and PRC2 occupancy identifies two classes of bivalent domains. PLoS Genet 4: pp. e1000242 CrossRef
    39. Jones, PA (2012) Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat Rev Genet 13: pp. 484-492 CrossRef
    40. Du, X, Han, L, Guo, AY, Zhao, Z (2012) Features of methylation and gene expression in the promoter-associated CpG islands using human methylome data. Comp Funct Genomics 2012: pp. 598987 CrossRef
    41. Gutierrez-Arcelus, M, Lappalainen, T, Montgomery, SB, Buil, A, Ongen, H, Yurovsky, A, Bryois, J, Giger, T, Romano, L, Planchon, A, Falconnet, E, Bielser, D, Gagnebin, M, Padioleau, I, Borel, C, Letourneau, A, Makrythanasis, P, Guipponi, M, Gehrig, C, Antonarakis, SE, Dermitzakis, ET (2013) Passive and active DNA methylation and the interplay with genetic variation in gene regulation. eLife 2: pp. e00523
    42. Ung, M, Ma, X, Johnson, KC, Christensen, BC, Cheng, C (2014) Effect of estrogen receptor alpha binding on functional DNA methylation in breast cancer. Epigenetics 9: pp. 523-532 CrossRef
    43. Medvedeva, YA, Khamis, AM, Kulakovskiy, IV, Ba-Alawi, W, Bhuyan, MS, Kawaji, H, Lassmann, T, Harbers, M, Forrest, AR, Bajic, VB, Consortium, F (2014) Effects of cytosine methylation on transcription factor binding sites. BMC Genomics 15: pp. 119 CrossRef
    44. Thurman, RE, Rynes, E, Humbert, R, Vierstra, J, Maurano, MT, Haugen, E, Sheffield, NC, Stergachis, AB, Wang, H, Vernot, B, Garg, K, John, S, Sandstrom, R, Bates, D, Boatman, L, Canfield, TK, Diegel, M, Dunn, D, Ebersol, AK, Frum, T, Giste, E, Johnson, AK, Johnson, EM, Kutyavin, T, Lajoie, B, Lee, BK, Lee, K, London, D, Lotakis, D, Neph, S (2012) The accessible chromatin landscape of the human genome. Nature 489: pp. 75-82 CrossRef
    45. Su, AI, Wiltshire, T, Batalov, S, Lapp, H, Ching, KA, Block, D, Zhang, J, Soden, R, Hayakawa, M, Kreiman, G, Cooke, MP, Walker, JR, Hogenesch, JB (2004) A gene atlas of the mouse and human protein-encoding transcriptomes. Proc Natl Acad Sci U S A 101: pp. 6062-6067 CrossRef
    46. Flicek, P, Amode, MR, Barrell, D, Beal, K, Brent, S, Carvalho-Silva, D, Clapham, P, Coates, G, Fairley, S, Fitzgerald, S, Gil, L, Gordon, L, Hendrix, M, Hourlier, T, Johnson, N, Kahari, AK, Keefe, D, Keenan, S, Kinsella, R, Komorowska, M, Koscielny, G, Kulesha, E, Larsson, P, Longden, I, McLaren, W, Muffato, M, Overduin, B, Pignatelli, M, Pritchard, B, Riat, HS (2012) Ensembl 2012. Nucleic Acids Res 40: pp. D84-D90 CrossRef
    47. Ravasi, T, Suzuki, H, Cannistraci, CV, Katayama, S, Bajic, VB, Tan, K, Akalin, A, Schmeier, S, Kanamori-Katayama, M, Bertin, N, Carninci, P, Daub, CO, Forrest, AR, Gough, J, Grimmond, S, Han, JH, Hashimoto, T, Hide, W, Hofmann, O, Kamburov, A, Kaur, M, Kawaji, H, Kubosaki, A, Lassmann, T, van Nimwegen, E, MacPherson, CR, Ogawa, C, Radovanovic, A, Schwartz, A, Teasdale, RD (2010) An atlas of combinatorial transcriptional regulation in mouse and man. Cell 140: pp. 744-752 CrossRef
  • 刊物主题:Life Sciences, general; Microarrays; Proteomics; Animal Genetics and Genomics; Microbial Genetics and Genomics; Plant Genetics & Genomics;
  • 出版者:BioMed Central
  • ISSN:1471-2164
文摘
Background Previous studies have shown that CpG dinucleotides are enriched in a subset of promoters and the CpG content of promoters is positively correlated with gene expression levels. But the relationship between divergence of CpG content and gene expression evolution has not been investigated. Here we calculate the normalized CpG (nCpG) content in DNA regions around transcription start site (TSS) and transcription terminal site (TTS) of genes in nine organisms, and relate them with expression levels measured by RNA-seq. Results The nCpG content of TSS shows a bimodal distribution in all organisms except platypus, whereas the nCpG content of TTS only has a single peak. When the nCpG contents are compared between different organisms, we observe a different evolution pattern between TSS and TTS: compared with TTS, TSS exhibits a faster divergence rate between closely related species but are more conserved between distant species. More importantly, we demonstrate the link between gene expression evolution and nCpG content changes: up-/down- regulation of genes in an organism is accompanied by the nCpG content increase/decrease in their TSS and TTS proximal regions. Conclusions Our results suggest that gene expression changes between different organisms are correlated with the alterations in normalized CpG contents of promoters. Our analyses provide evidences for the impact of nCpG content on gene expression evolution.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700