用户名: 密码: 验证码:
The role of molecular imaging in the evaluation of myocardial and peripheral angiogenesis
详细信息    查看全文
  • 作者:Mitchel R. Stacy (1)
    Jin Chul Paeng (2)
    Albert J. Sinusas (1) (3)

    1. Department of Internal Medicine
    ; Section of Cardiovascular Medicine ; Yale University School of Medicine ; Dana-3 ; P.O. Box 208017 ; New Haven ; CT ; 06520 ; USA
    2. Department of Nuclear Medicine
    ; Seoul National University Hospital ; Seoul ; South Korea
    3. Department of Diagnostic Radiology
    ; Yale University School of Medicine ; New Haven ; CT ; 06520 ; USA
  • 关键词:Myocardial angiogenesis ; Peripheral angiogenesis ; Molecular imaging ; PET ; SPECT
  • 刊名:Annals of Nuclear Medicine
  • 出版年:2015
  • 出版时间:April 2015
  • 年:2015
  • 卷:29
  • 期:3
  • 页码:217-223
  • 全文大小:349 KB
  • 参考文献:1. Stacy, MR, Sinusas, AJ (2015) Emerging imaging modalities in regenerative medicine. Curr Pathobiol Rep 3: pp. 227-36 CrossRef
    2. Stacy, MR, Zhou, W, Sinusas, AJ (2013) Radiotracer imaging of peripheral vascular disease. J Nucl Med 54: pp. 2104-2110 CrossRef
    3. Cal-Gonzalez, J, Lage, E, Herranz, E, Vicente, E, Udias, JM, Moore, SC (2015) Simulation of triple coincidences in PET. Phys Med Biol 60: pp. 117-136 CrossRef
    4. Andreyev, A, Celler, A (2011) Dual-isotope PET using positron-gamma emitters. Phys Med Biol 56: pp. 4539-4556 CrossRef
    5. Stacy, MR, Maxfield, MW, Sinusas, AJ (2012) Targeted molecular imaging of angiogenesis in PET and SPECT: a review. Yale J Biol Med. 85: pp. 75-86
    6. Hong, H, Chen, F, Zhang, Y, Cai, W (2014) New radiotracers for imaging of vascular targets in angiogenesis-related diseases. Adv Drug Deliv Rev 76: pp. 2-20 CrossRef
    7. Shweiki, D, Itin, A, Soffer, D, Keshet, E (1992) Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. Nature 359: pp. 843-845 CrossRef
    8. Brogi, E, Schatteman, G, Wu, T, Kim, EA, Varticovski, L, Keyt, B (1996) Hypoxia-induced paracrine regulation of vascular endothelial growth factor receptor expression. J Clin Invest 97: pp. 469-476 CrossRef
    9. Banai, S, Jaklitsch, MT, Shou, M, Lazarous, DF, Scheinowitz, M, Biro, S (1994) Angiogenic-induced enhancement of collateral blood flow to ischemic myocardium by vascular endothelial growth factor in dogs. Circulation 89: pp. 2183-2189 CrossRef
    10. Li, J, Brown, LF, Hibberd, MG, Grossman, JD, Morgan, JP, Simons, M (1996) VEGF, flk-1, and flt-1 expression in a rat myocardial infarction model of angiogenesis. Am J Physiol 270: pp. H1803-H1811
    11. Dufraine, J, Funahashi, Y, Kitajewski, J (2008) Notch signaling regulates tumor angiogenesis by diverse mechanisms. Oncogene 27: pp. 5132-5137 CrossRef
    12. Eichmann, A, Simons, M (2012) VEFG signaling inside vascular endothelial cells and beyond. Curr Opin Cell Biol 24: pp. 188-193 CrossRef
    13. Schwartz, MA, Schaller, MD, Ginsberg, MH (1995) Integrins: emerging paradigms of signal transduction. Ann Rev Cell Dev Biol. 11: pp. 549-599 CrossRef
    14. Cai, W, Guzman, R, Hsu, AR, Wang, H, Chen, K, Sun, G (2009) Positron emission tomography imaging of poststroke angiogenesis. Stroke 40: pp. 270-277 CrossRef
    15. Choi, H, Phi, JH, Paeng, JC, Kim, SK, Lee, YS, Jeong, JM (2013) Imaging of integrin a(V)B(3) expression using (68)Ga-RGD positron emission tomography in pediatric cerebral infarct. Mol Imaging. 12: pp. 213-217
    16. Kalinowski, L, Dobrucki, LW, Meoli, DF, Dione, DP, Sadeghi, MM, Madri, JA (2008) Targeted imaging of hypoxia-induced integrin activation in myocardium early after infarction. J Appl Physiol 104: pp. 1504-1512 CrossRef
    17. Dimastromatteo, J, Riou, LM, Ahmadi, M, Pons, G, Pellegrini, E, Broisat, A (2010) In vivo molecular imaging of myocardial angiogenesis using the alpha(v)beta3 integrin-targeted tracer 99mTc-RAFT-RGD. J Nucl Cardiol 17: pp. 435-443 CrossRef
    18. Gao, H, Lang, L, Guo, N, Cao, F, Quan, Q, Hu, S (2012) PET imaging of angiogenesis after myocardial infarction/reperfusion using a one-step labeled integrin-targeted tracer 18F-AIF-NOTA-PRGD2. Eur J Nucl Med Mol Imaging 39: pp. 683-692 CrossRef
    19. Eo, JS, Paeng, JC, Lee, S, Lee, YS, Jeong, JM, Kang, KW (2013) Angiogenesis imaging in myocardial infarction using 68聽Ga-NOTA-RGD PET: characterization and application to therapeutic efficacy monitoring in rats. Coron Artery Dis 24: pp. 303-311 CrossRef
    20. Menichetti, L, Kusmic, C, Panetta, D, Arosio, D, Petroni, D, Matteucci, M (2013) MicroPET/CT imaging of alpha(v)beta(3) integrin via a novel (68)Ga-NOTA-RGD peptidomimetic conjugate in rat myocardial infarction. Eur J Nucl Med Mol Imaging 40: pp. 1265-1274 CrossRef
    21. Meoli, DF, Sadeghi, MM, Krassilnikova, S, Bourke, BN, Giordano, FJ, Dione, DP (2004) Noninvasive imaging of myocardial angiogenesis following experimental myocardial infarction. J Clin Invest. 113: pp. 1684-1691 CrossRef
    22. Dobrucki, LW, Meoli, DF, Hu, J, Sadeghi, MM, Sinusas, AJ (2009) Regional hypoxia correlates with the uptake of a radiolabeled targeted marker of angiogenesis in rat model of myocardial hypertrophy and ischemic injury. J Physiol Pharmacol 60: pp. 117-123
    23. Paeng, JC, Bregasi, A, Sahul, Z, Kalinowski, L, Dobrucki, LW, Brennan, M (2014) Serial reference tissue-based quantitative and volumetric analysis of integrin-targeted angiogenesis imaging: chronic canine model of myocardial infarction. J Nucl Med 55: pp. 1710
    24. Higuchi, T, Bengel, FM, Seidl, S, Watzlowik, P, Kessler, H, Hegenloh, R (2008) Assessment of alphavbeta3 integrin expression after myocardial infarction by positron emission tomography. Cardiovasc Res 78: pp. 395-403 CrossRef
    25. Makowski, MR, Ebersberger, U, Nekolla, S, Schwaiger, M (2008) In vivo molecular imaging of angiogenesis, targeting alphavbeta3 integrin expression, in a patient after acute myocardial infarction. Eur Hear. J. 29: pp. 2201 CrossRef
    26. Rodriguez-Porcel, M, Cai, W, Gheysens, O, Willmann, JK, Chen, K, Wang, H (2008) Imaging of VEGF receptor in a rat myocardial infarction model using PET. J Nucl Med 49: pp. 667-673 CrossRef
    27. Orbay, H, Zhang, Y, Valdovinos, HF, Song, G, Hernandez, R, Theuer, CP (2013) Positron emission tomography imaging of CD105 expression in a rat myocardial infarction model with (64)Cu-NOTA-TRC105. Am J Nucl Med Mol Imaging. 4: pp. 1-9
    28. Sun, Y, Zeng, Y, Zhu, Y, Feng, F, Xu, W, Wu, C (2014) Application of (68)Ga-PRGD2 PET/CT for alpha(v)beta(3)-integrin imaging of myocardial infarction and stroke. Theranostics. 4: pp. 778-786 CrossRef
    29. Laitinen, I, Notni, J, Pohle, K, Rudelius, M, Farrell, E, Nekolla, SG (2013) Comparison of cyclic RGD peptides for alpha(v)beta(3) integrin detection in a rat model of myocardial infarction. EJNMMI Res 3: pp. 38 CrossRef
    30. Johnson, LL, Schofield, L, Donahay, T, Bouchard, M, Poppas, A, Haubner, R (2008) Radiolabeled arginine-glycine-aspartic acid peptides to image angiogenesis in swine model of hibernating myocardium. JACC Cardiovasc Imaging 1: pp. 500-510 CrossRef
    31. Dobrucki, L, Tsutsumi, Y, Kalinowski, L, Dean, J, Gavin, M, Sen, S (2010) Analysis of angiogenesis induced by local IGF-1 expression after myocardial infarction using microSPECT-CT imaging. J Mol Cell Cardiol 48: pp. 1071-1079 CrossRef
    32. Cocker MS, Dwivedi G, Marvin B, Poirier M, Dennie C, Wells G, et al. Integrin imaging for the detection of diffuse myocardial fibrosis in patients with hypertrophic cardiomyopathy: direct comparison between single-photon emission computed tomography and cardiovascular magnetic resonance. The SCAR study. Am Hear Assoc Sci Sess. 2012;A19661.
    33. Mozid, AM, Holstensson, M, Choudhury, T, Ben-Haim, S, Allie, R, Martin, J (2014) Clinical feasibility study to detect angiogenesis following bone marrow stem cell transplantation in chronic ischaemic heart failure. Nucl Med Commun 35: pp. 839-848
    34. Orbay, H, Hong, H, Koch, JM, Valdovinos, HF, Hacker, TA, Theuer, CP (2013) Pravastatin stimulates angiogenesis in a murine hindlimb ischemia model: a positron emission tomography imaging study with (64)Cu-NOTA-TRC105. Am J Transl Res 6: pp. 54-63
    35. Almutairi, A, Rossin, R, Shokeen, M, Hagooly, A, Ananth, A, Capoccia, B (2009) Biodegradable dendritic positron-emitting nanoprobes for the noninvasive imaging of angiogenesis. Proc Natl Acad Sci USA 106: pp. 685-690 CrossRef
    36. Dobrucki, LW, Dione, DP, Kalinowski, L, Dione, D, Mendizabal, M, Yu, J (2009) Serial noninvasive targeted imaging of peripheral angiogenesis: validation and application of a semiautomated quantitative approach. J Nucl Med 50: pp. 1356-1363 CrossRef
    37. Lu, E, Wagner, WR, Schellenberger, U, Abraham, JA, Klibanov, AL, Woulfe, SR (2003) Targeted in vivo labeling of receptors for vascular endothelial growth factor: approach to identification of ischemic tissue. Circulation 108: pp. 97-103 CrossRef
    38. Stacy, MR, Yu, DY, Maxfield, MW, Jaba, IM, Jozwik, BP, Zhuang, ZW (2014) Multimodality imaging approach for serial assessment of regional changes in lower extremity arteriogenesis and tissue perfusion in a porcine model of peripheral arterial disease. Circ Cardiovasc Imaging 7: pp. 92-99 CrossRef
    39. Lee, K, Jung, K, Song, S, Kim, DH, Lee, BC, Sung, HJ (2005) Radiolabeled RGD uptake and alpha(v) integrin expression is enhanced in ischemic murine hindlimbs. J Nucl Med 46: pp. 472-478
    40. Hua, J, Dobrucki, LW, Sadeghi, MM, Zhang, J, Bourke, BN, Cavaliere, P (2005) Noninvasive imaging of angiogenesis with a (99聽m)Tc-labeled peptide targeted at alpha(v)beta(3) integrin after murine hindlimb ischemia. Circulation 111: pp. 3255-3260 CrossRef
    41. Jeong, JM, Hong, MK, Chang, YS, Lee, Y-S, Kim, YJ, Cheon, GJ (2008) Preparation of a promising anigogenesis PET imaging agent: (68)Ga-labeled c(RGDyK)-isothiocyanatobenzyl1-1,4,7-triazacyclononane-1,4,7-triacetic acid and feasibility studies in mice. J Nucl Med 49: pp. 830-836 CrossRef
    42. Willmann, JK, Chen, K, Wang, H, Paulmurugan, R, Rollins, M, Cai, W (2008) Monitoring of the biological response to murine hindlimb ischemia with 64Cu-labeled vascular endothelial growth factor-121 positron emission tomography. Circulation 117: pp. 915-922 CrossRef
    43. Liu, Y, Pressly, ED, Abendschein, DR, Hawker, CJ, Woodard, GE, Woodard, PK (2011) Targeting angiogenesis using a C-type atrial natriuretic factor-conjugated nanoprobe and PET. J Nucl Med 52: pp. 1956-1963 CrossRef
    44. Li, S, Sinusas, AJ, Dobrucki, LW, Liu, YH (2013) New approach to quantification of molecularly targeted radiotracer uptake from hybrid cardiac SPECT/CT: methodology and validation. J Nucl Med 54: pp. 2175-2181 CrossRef
    45. Lindsey, ML, Escobar, GP, Dobrucki, LW, Goshorn, DK, Bouges, S, Mingoia, JT (2006) Matrix metalloproteinase-9 gene deletion facilitates angiogenesis after myocardial infarction. Am J Physiol Hear Circ Physiol. 290: pp. H232-H239 CrossRef
    46. Orbay, H, Zhang, Y, Hong, H, Hacker, TA, Valdovinos, HF, Zagzebski, JA (2013) Positron emission tomography imaging of angiogenesis in a murine hindlimb ischemia model with (64)Cu-labeled TRC105. Mol Pharm 10: pp. 2749-2756 CrossRef
    47. Mehra, VC, Jackson, E, Zhang, XM, Jiang, XC, Dobrucki, LW, Yu, J (2014) Ceramide-activated phosphatase mediates fatty acid-induced endothelial VEGF resistance and impaired angiogenesis. Am J Pathol 184: pp. 1562-1576 CrossRef
    48. Hedhli, N, Dobrucki, LW, Kalinowski, A, Zhuang, ZW, Wu, X, Russell, RR (2012) Endothelial-derived neuregulin is an important mediator of ischaemia-induced angiogenesis and arteriogenesis. Cardiovasc Res 93: pp. 516-524 CrossRef
  • 刊物主题:Nuclear Medicine; Imaging / Radiology;
  • 出版者:Springer Japan
  • ISSN:1864-6433
文摘
Angiogenesis, or the formation of new microvasculature, is a physiological process that may occur in the setting of chronic tissue ischemia and can play an important role in improving tissue perfusion and blood flow following myocardial infarction or in the presence of peripheral vascular disease (PVD). Molecular imaging of angiogenesis within the cardiovascular system is a developing field of study. Targeted imaging of angiogenesis has the potential for non-invasive assessment of the underlying molecular signaling events associated with the angiogenic process and, when applied in conjunction with physiological perfusion imaging, may be utilized to predict and evaluate clinical outcomes in the setting of ischemic heart disease or PVD. This review discusses the developing radiotracer-based imaging techniques and technology currently in use that possess potential for clinical translation, with specific focus on PET and SPECT imaging of myocardial and peripheral angiogenesis.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700