用户名: 密码: 验证码:
Modelling Pollutant Dispersion in a Street Network
详细信息    查看全文
  • 作者:N. Ben Salem (1)
    V. Garbero (2) (3)
    P. Salizzoni (1)
    G. Lamaison (1)
    L. Soulhac (1)

    1. Laboratoire de M茅canique des Fluides et d鈥橝coustique
    ; UMR CNRS 5509 ; Ecole Centrale de Lyon ; INSA Lyon ; Universit茅 Claude ; University of Lyon ; Bernard Lyon I ; 36 ; avenue Guy de Collongue ; 69134 ; Ecully ; France
    2. Dipartimento di Matematica
    ; Politecnico di Torino ; Corso Duca degli Abruzzi ; 24 ; 10129 ; Turin ; Italy
    3. Sistemi Previsionali
    ; Arpa Piemonte ; Via Pio VII ; 9 ; 10135 ; Turin ; Italy
  • 关键词:Dispersion models ; Street network ; Urban air pollution ; Wind ; tunnel experiments
  • 刊名:Boundary-Layer Meteorology
  • 出版年:2015
  • 出版时间:April 2015
  • 年:2015
  • 卷:155
  • 期:1
  • 页码:157-187
  • 全文大小:2,634 KB
  • 参考文献:1. Balogun, AA, Tomlin, AS, Wood, CR, Barlow, JF, Belcher, SE, Smalley, RJ, Lingard, JJN, Arnold, SJ, Dobre, A, Robins, AG, Martin, D, Shallcross, DE (2010) In-street wind direction variability in the vicinity of a busy intersection in Central London. Boundary-Layer Meteorol 136: pp. 489-513 CrossRef
    2. Barlow, JF, Harman, IN, Belcher, SE (2004) Scalar fluxes from urban street canyons. Part I: laboratory simulation. Boundary-Layer Meteorol 113: pp. 369-385 CrossRef
    3. Belcher, SE (2005) Mixing and transport in urban areas. Philos Trans R Soc A 363: pp. 2947-2968 CrossRef
    4. Bentham, T, Britter, R (2003) Spatially averaged flow within obstacle arrays. Atmos Environ 37: pp. 2037-2043 CrossRef
    5. Brown, MJ, Gowardhan, AA, Nelson, MA, Williams, MD, Pardyjak, ER (2013) QUIC transport and dispersion modelling of two releases from the Joint Urban 2003 field experiment. Int J Environ Pollut 52: pp. 263 CrossRef
    6. Buccolieri R, Garbero V, Salizzoni P, Soulhac L, Di Sabatino S, Sandberg M (2011) Pollutant dispersion at the neighborhood scale via wind-tunnel experiments and CFD simulations. In: Presented at the Proceeding of 13th international conference on wind engineering, Amsterdam, July 10鈥?5
    7. Carpentieri, M, Robins, AG, Baldi, S (2009) Three-dimensional mapping of air flow at an urban canyon intersection. Boundary-Layer Meteorol 133: pp. 277-296 CrossRef
    8. Carpentieri, M, Salizzoni, P, Robins, A, Soulhac, L (2012) Evaluation of a neighbourhood scale, street network dispersion model through comparison with wind-tunnel data. Environ Model Softw 37: pp. 110-124 CrossRef
    9. Carruthers, DJ, Holroyd, RJ, Hunt, JCR, Weng, WS, Robins, AG, Apsley, DD, Thomson, DJ, Smith, FB (1994) UK-ADMS: a new approach to modelling dispersion in the earth鈥檚 atmospheric boundary layer. J Wind Eng Ind Aerodyn 52: pp. 139-153 CrossRef
    10. Castagnetti, FB, Salizzoni, P, Garbero, V, Genon, G, Soulhac, L (2008) Atmospheric pollution modelling in urban areas at local scale: an example of the application to a neighborhood in Turin. Geoing Ambient E Mineraria 124: pp. 63-76
    11. Chang, J, Hanna, SR (2004) Air quality model performance evaluation. Meteorol Atmos Phys 87: pp. 167-196 CrossRef
    12. Christen, A, Gorsel, E, Vogt, R (2007) Coherent structures in urban roughness sublayer turbulence. Int J Climatol 27: pp. 1955-1968 CrossRef
    13. Claus, J, Coceal, O, Thomas, TG, Branford, S, Belcher, SE, Castro, IP (2012) Wind-direction effects on urban-type flows. Boundary-Layer Meteorol 142: pp. 265-287 CrossRef
    14. Claus, J, Krogstad, P-脜, Castro, IP (2012) Some measurements of surface drag in urban-type boundary layers at various wind angles. Boundary-Layer Meteorol 145: pp. 407-422 CrossRef
    15. Coceal, O, Thomas, TG, Castro, IP, Belcher, SE (2006) Mean flow and turbulence statistics over groups of urban-like cubical obstacles. Boundary-Layer Meteorol 121: pp. 491-519 CrossRef
    16. Coceal, O, Dobre, A, Thomas, TG, Belcher, SE (2007) Structure of turbulent flow over regular arrays of cubical roughness. J Fluid Mech 589: pp. 375-409 CrossRef
    17. Sabatino, S, Buccolieri, R, Salizzoni, P (2013) Recent advancements in numerical modelling of flow and dispersion in urban areas: a short review. Int J Environ Pollut 52: pp. 172-191 CrossRef
    18. Dobre, A, Arnold, SJ, Smalley, RJ, Boddy, JWD, Barlow, JF, Tomlin, AS, Belcher, SE (2005) Flow field measurements in the proximity of an urban intersection in London, UK. Atmos Environ 39: pp. 4647-4657 CrossRef
    19. Duchenne C, Armand P, Oldrini O, Olry C, Moussafir J (2011) Application of PMSS, the parallel version of MSS, to the micrometeorological flow field and deleterious dispersion inside an extended simulation domain covering the whole Paris area. In: 14th International conference on harmonisation within atmospheric dispersion modelling fir regulatory purposes, Harmo鈥?4, Kos, 2鈥? October 2011
    20. Garbero V, Salizzoni P, Berrone S, Soulhac L (2010a) Air pollution modelling at the urban scale and population exposure: a case study in Turin. In: 31st NATO/SPS international technical meeting on air pollution modelling and its application, 27 September鈥?1 October 2010, Torino, Italy
    21. Garbero, V, Salizzoni, P, Soulhac, L (2010) Experimental study of pollutant dispersion within a network of streets. Boundary-Layer Meteorol 136: pp. 457-487 CrossRef
    22. Giambini P, Salizzoni P, Soulhac L, Corti A (2010) Influence of meteorological input parameters on urban dispersion modeling for traffic scenario analysis. In: 31st NATO/SPS international technical meeting on air pollution modelling and its application, 27 September鈥?1 October 2010, Torino, Italy
    23. Gowardhan, AA, Pardyjak, ER, Senocak, I, Brown, MJ (2011) A CFD-based wind solver for an urban fast response transport and dispersion model. Environ Fluid Mech 11: pp. 439-464 CrossRef
    24. Gromke, C, Ruck, B (2012) Pollutant concentrations in street canyons of different aspect ratio with avenues of trees for various wind directions. Boundary-Layer Meteorol 144: pp. 41-64 CrossRef
    25. Hamlyn, D, Hilderman, T, Britter, R (2007) A simple network approach to modelling dispersion among large groups of obstacles. Atmos Environ 41: pp. 5848-5862 CrossRef
    26. Hertel O, Berkowicz R (1989) Modelling pollution from traffic in a street canyon. Evaluation of data and model development. DMU Luft A-129, NERI
    27. Hoydysh, WG, Dabberdt, WF (1994) Concentration fields at urban intersections?: fluid modeling studies. Atmos Environ 28: pp. 1849-1860 CrossRef
    28. Jackson, PS (1981) On the displacement height in the logarithmic velocity profile. J Fluid Mech 111: pp. 15-25 CrossRef
    29. Marro, M, Salizzoni, P, Cierco, FX, Korsakissok, I, Danzi, E, Soulhac, L (2014) Plume rise and spread in buoyant releases from elevated sources in the lower atmosphere. Environ Fluid Mech 14: pp. 201-219 CrossRef
    30. McHugh, CA, Carruthers, DJ, Edmunds, HA (1997) ADMS-urban: an air quality management system for traffic, domestic and industrial pollution. Int J Environ Pollut 8: pp. 666-674
    31. Michioka, T, Sato, A (2012) Effect of incoming turbulent structure on pollutant removal from two-dimensional street canyon. Boundary-Layer Meteorol 145: pp. 469-484 CrossRef
    32. Moonen, P, Dorer, V, Carmeliet, J (2011) Evaluation of the ventilation potential of courtyards and urban street canyons using RANS and LES. J Wind Eng Ind Aerodyn 99: pp. 414-423 CrossRef
    33. Moussafir J, Oldrini O, Tinarelli G, Sontowski J, Dougherty C (2004) A new operational approach to deal with dispersion around obstacles: the MSS (Micro- Swift-Spray) software suite. In: Proceedings of 9th international conference on harmonisation within atmospheric dispersion modelling for regulatory purposes, vol 2, p 114鈥?18
    34. Murena, F, Benedetto, A, D鈥橭nofrio, M, Vitiello, G (2011) Mass transfer velocity and momentum vertical exchange in simulated deep street canyons. Boundary-Layer Meteorol 140: pp. 125-142 CrossRef
    35. Namdeo, AK, Colls, JJ (1996) Development and evaluation of SBLINE, a suite of models for the prediction of pollution concentrations from vehicles in urban areas. Sci Total Environ 189鈥?90: pp. 311-320 CrossRef
    36. Narita, K (2007) Experimental study of the transfer velocity for urban surfaces with a water evaporation method. Boundary-Layer Meteorol 122: pp. 293-320 CrossRef
    37. Nieuwstadt FTM, Van Dop H (eds) (1982) Atmospheric turbulence and air pollution modelling. Atmospheric sciences library, vol 1. Springer, Dordrecht
    38. Perret, L, Savory, E (2013) Large-scale structures over a single street canyon immersed in an urban-type boundary layer. Boundary-Layer Meteorol 148: pp. 111-131 CrossRef
    39. Pol, SU, Brown, MJ (2008) Flow patterns at the ends of a street canyon: measurements from the joint urban 2003 field experiment. J Appl Meteorol Climatol 47: pp. 1413-1426 CrossRef
    40. Princevac, M, Baik, J-J, Li, X, Pan, H, Park, S-B (2010) Lateral channeling within rectangular arrays of cubical obstacles. J Wind Eng Ind Aerodyn 98: pp. 377-385 CrossRef
    41. Rafailidis, S (1997) Influence of building areal density and roof shape on the wind characteristicsabove a town. Boundary-Layer Meteorol 85: pp. 255-271 CrossRef
    42. Robins A (2008) DAPPLE (Dispersion of Air Pollution and its Penetration into the Local Environment) experiments and modelling. HPA Chemical Hazards and Poisons Report, pp 24鈥?8
    43. Robins A (2011) Executive summary鈥攖he HO-DAPPLE and SIRANE projects. Final reports to the Home Office. DAPPLE 2009/13 v3. University of Surrey
    44. Robins, A, Savory, E, Scaperdas, A, Grigoriadis, D (2002) Spatial variability and source鈥搑eceptor relations at a street intersection. Water Air Soil Pollut Focus 2: pp. 381-393 CrossRef
    45. R枚ckle R (1990) Bestimmung der stomungsverhaltnisse im Bereich Komplexer Bebauugsstrukturen. PhD Thesis, Vom Fachbereich Mechanik, der Technischen Hochschule Darmstadt, Germany
    46. Rotach, MW (1993) Turbulence close to a rough urban surface. Part II: variances and gradients. Boundary-Layer Meteorol 66: pp. 75-92 CrossRef
    47. Rotach, MW (1995) Profiles of turbulence statistics in and above an urban street canyon. Atmos Environ 29: pp. 1473-1486 CrossRef
    48. Salizzoni P (2006) Mass and momentum transfer in the urban boundary layer. PhD Thesis, Ecole Centrale de Lyon, 186 pp
    49. Salizzoni, P, Soulhac, L, M茅jean, P, Perkins, RJ (2008) Influence of a two-scale surface roughness on a neutral turbulent boundary layer. Boundary-Layer Meteorol 127: pp. 97-110 CrossRef
    50. Salizzoni, P, Soulhac, L, Mejean, P (2009) Street canyon ventilation and atmospheric turbulence. Atmos Environ 43: pp. 5056-5067 CrossRef
    51. Salizzoni, P, Marro, M, Soulhac, L, Grosjean, N, Perkins, RJ (2011) Turbulent transfer between street canyons and the overlying atmospheric boundary layer. Boundary-Layer Meteorol 141: pp. 393-414 CrossRef
    52. Scaperdas A, Colvile R, Robins A (1998) Dispersion modelling at urban street canyon intersections: a comparison of CFD with wind-tunnel modelling. In: 5th International conference on Harmonisation within atmospheric dispersion modelling for regulatory purposes, Rodos Greece
    53. Simo毛ns, S, Wallace, JM (2008) The flow across a street canyon of variable width鈥擯art 2: scalar dispersion from a street level line source. Atmos Environ 42: pp. 2489-2503 CrossRef
    54. Soulhac L (2000) Mod茅lisation de la dispersion atmosph茅rique a l鈥檌nt茅rieur de la canop茅e urbaine. PhD Thesis, Ecole Centrale de Lyon, 351 pp
    55. Soulhac, L, Puel, C, Duclaux, O, Perkins, RJ (2003) Simulations of atmospheric pollution in Greater Lyon: an example of the use of nested models. Atmos Environ 37: pp. 5147-5156 CrossRef
    56. Soulhac, L, Perkins, RJ, Salizzoni, P (2008) Flow in a street canyon for any external wind direction. Boundary-Layer Meteorol 126: pp. 365-388 CrossRef
    57. Soulhac, L, Garbero, V, Salizzoni, P, Mejean, P, Perkins, RJ (2009) Flow and dispersion in street intersections. Atmos Environ 43: pp. 2981-2996 CrossRef
    58. Soulhac, L, Salizzoni, P, Cierco, F-X, Perkins, R (2011) The model SIRANE for atmospheric urban pollutant dispersion; part I, presentation of the model. Atmos Environ 45: pp. 7379-7395 CrossRef
    59. Soulhac, L, Salizzoni, P, Mejean, P, Didier, D, Rios, I (2012) The model SIRANE for atmospheric urban pollutant dispersion; part II, validation of the model on a real case study. Atmos Environ 49: pp. 320-337 CrossRef
    60. Soulhac, L, Salizzoni, P, Mejean, P, Perkins, RJ (2013) Parametric laws to model urban pollutant dispersion with a street network approach. Atmos Environ 67: pp. 229-241 CrossRef
    61. Tinarelli, G, Brusasca, G, Oldrini, O, Anfossi, D, Castelli, ST, Moussafir, J Micro-Swift-Spray (MSS): a new modelling system for the simulation of dispersion at microscale. General description and validation. In: Borrego, C, Norman, A-L eds. (2007) Air pollution modeling and its application XVII. Springer, New York, pp. 449-458
    62. Vin莽ont, J-Y, Simo毛ns, S, Ayrault, M, Wallace, JM (2000) Passive scalar dispersion in a turbulent boundary layer from a line source at the wall and downstream of an obstacle. J Fluid Mech 424: pp. 127-167 CrossRef
    63. Xie, Z, Castro, IP (2006) LES and RANS for turbulent flow over arrays of wall-mounted obstacles. Flow Turbul Combust 76: pp. 291-312 CrossRef
    64. Xie, Z-T, Coceal, O, Castro, IP (2008) Large-eddy simulation of flows over random urban-like obstacles. Boundary-Layer Meteorol 129: pp. 1-23 CrossRef
  • 刊物类别:Earth and Environmental Science
  • 刊物主题:Earth sciences
    Meteorology and Climatology
    Atmospheric Protection, Air Quality Control and Air Pollution
  • 出版者:Springer Netherlands
  • ISSN:1573-1472
文摘
This study constitutes a further step in the analysis of the performances of a street network model to simulate atmospheric pollutant dispersion in urban areas. The model, named SIRANE, is based on the decomposition of the urban atmosphere into two sub-domains: the urban boundary layer, whose dynamics is assumed to be well established, and the urban canopy, represented as a series of interconnected boxes. Parametric laws govern the mass exchanges between the boxes under the assumption that the pollutant dispersion within the canopy can be fully simulated by modelling three main bulk transfer phenomena: channelling along street axes, transfers at street intersections, and vertical exchange between street canyons and the overlying atmosphere. Here, we aim to evaluate the reliability of the parametrizations adopted to simulate these phenomena, by focusing on their possible dependence on the external wind direction. To this end, we test the model against concentration measurements within an idealized urban district whose geometrical layout closely matches the street network represented in SIRANE. The analysis is performed for an urban array with a fixed geometry and a varying wind incidence angle. The results show that the model provides generally good results with the reference parametrizations adopted in SIRANE and that its performances are quite robust for a wide range of the model parameters. This proves the reliability of the street network approach in simulating pollutant dispersion in densely built city districts. The results also show that the model performances may be improved by considering a dependence of the wind fluctuations at street intersections and of the vertical exchange velocity on the direction of the incident wind. This opens the way for further investigations to clarify the dependence of these parameters on wind direction and street aspect ratios.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700