用户名: 密码: 验证码:
Ophthalmology Issues in Schizophrenia
详细信息    查看全文
  • 作者:Carolina P. B. Gracitelli (1) (2)
    Ricardo Y. Abe (1) (3)
    Alberto Diniz-Filho (1) (4)
    Fabiana Benites Vaz-de-Lima (5)
    Augusto Paranhos Jr. (2)
    Felipe A. Medeiros (1)

    1. Hamilton Glaucoma Center and Department of Ophthalmology
    ; University of California ; 9500 Gilman Drive ; La Jolla ; CA ; 92093-0946 ; USA
    2. Department of Ophthalmology
    ; Federal University of S茫o Paulo ; Botucatu Street ; 821. Vila Clementino ; S茫o Paulo ; SP ; 04023-062 ; Brazil
    3. Department of Ophthalmology
    ; University of Campinas ; Vital Brasil Street ; 251 ; Cidade Universit谩ria Zeferino Vaz ; Campinas ; SP ; 13083-970 ; Brazil
    4. Department of Ophthalmology and Otorhinolaryngology
    ; Federal University of Minas Gerais ; Alfredo Balena Avenue ; 190 Santa Efigenia ; Belo Horizonte ; MG ; 30130-100 ; Brazil
    5. Department of Psychiatry
    ; Federal University of S茫o Paulo ; S茫o Paulo ; Brazil
  • 关键词:Schizophrenia ; Visual impairment ; Visual deficits ; Dopamine ; Glutamate
  • 刊名:Current Psychiatry Reports
  • 出版年:2015
  • 出版时间:May 2015
  • 年:2015
  • 卷:17
  • 期:5
  • 全文大小:887 KB
  • 参考文献:1. Report WHOMH. Mental Health: New understanding, New Hope, Geneva World Health Organization. 2001.
    2. Stefansson, H, Ophoff, RA, Steinberg, S (2009) Common variants conferring risk of schizophrenia. Nature 460: pp. 744-7
    3. Purcell, SM, Wray, NR (2009) Common polygenic variation contributes to risk of schizophrenia and bipolar disorder. Nature 460: pp. 748-52
    4. Insel, TR (2010) Rethinking schizophrenia. Nature 468: pp. 187-93
    5. Yeap, S, Kelly, SP, Sehatpour, P (2008) Visual sensory processing deficits in Schizophrenia and their relationship to disease state. Eur Arch Psychiatry Clin Neurosci 258: pp. 305-16
    6. Butler, PD, Schechter, I, Zemon, V (2001) Dysfunction of early-stage visual processing in schizophrenia. Am J Psychiatry 158: pp. 1126-33
    7. Butler, PD, Javitt, DC (2005) Early-stage visual processing deficits in schizophrenia. Curr Opin Psychiatry 18: pp. 151-7
    8. Slaghuis, WL (1998) Contrast sensitivity for stationary and drifting spatial frequency gratings in positive- and negative-symptom schizophrenia. J Abnorm Psychol 107: pp. 49-62
    9. Chen, Y, Levy, DL, Sheremata, S (2004) Compromised late-stage motion processing in schizophrenia. Biol Psychiatry 55: pp. 834-41
    10. Butler, PD, Zemon, V, Schechter, I (2005) Early-stage visual processing and cortical amplification deficits in schizophrenia. Arch Gen Psychiatry 62: pp. 495-504
    11. Giersch, A, Lalanne, L, Assche, M (2013) On disturbed time continuity in schizophrenia: an elementary impairment in visual perception?. Front Psychol 4: pp. 281
    12. Javitt, DC (2007) Glutamate and schizophrenia: phencyclidine N-methyl-D-aspartate receptors, and dopamine-glutamate interactions. Int Rev Neurobiol 78: pp. 69-108
    13. Carlsson, A (1988) The current status of the dopamine hypothesis of schizophrenia. Neuropsychopharmacol: Off Publ Am Coll Neuropsychopharmacol 1: pp. 179-86
    14. Djamgoz, MB, Hankins, MW, Hirano, J (1997) Neurobiology of retinal dopamine in relation to degenerative states of the tissue. Vis Res 37: pp. 3509-29
    15. Frederick, JM, Rayborn, ME, Laties, AM (1982) Dopaminergic neurons in the human retina. J Comp Neurol 210: pp. 65-79
    16. Haft, M, Hemmen, JL (1998) Theory and implementation of infomax filters for the retina. Network 9: pp. 39-71
    17. Behrens, U, Wagner, HJ (2004) Terminal nerve and vision. Microsc Res Tech 65: pp. 25-32
    18. Bodis-Wollner, I (1990) Visual deficits related to dopamine deficiency in experimental animals and Parkinson鈥檚 disease patients. Trends Neurosci 13: pp. 296-302
    19. Deutsch, SI, Rosse, RB, Schwartz, BL (2001) A revised excitotoxic hypothesis of schizophrenia: therapeutic implications. Clin Neuropharmacol 24: pp. 43-9
    20. Bressan, RA, Pilowsky, LS (2003) Glutamatergic hypothesis of schizophrenia. Rev Bras Psiquiatr (Sao Paulo, Brazil: 1999) 25: pp. 177-83
    21. Jojich, L, Pourcho, RG (1996) Glutamate immunoreactivity in the cat retina: a quantitative study. Vis Neurosci 13: pp. 117-33
    22. Ehinger, B, Ottersen, OP, Storm-Mathisen, J (1988) Bipolar cells in the turtle retina are strongly immunoreactive for glutamate. Proc Natl Acad Sci U S A 85: pp. 8321-5
    23. Sucher, NJ, Lipton, SA, Dreyer, EB (1997) Molecular basis of glutamate toxicity in retinal ganglion cells. Vis Res 37: pp. 3483-93
    24. Peng, YW, Blackstone, CD, Huganir, RL (1995) Distribution of glutamate receptor subtypes in the vertebrate retina. Neuroscience 66: pp. 483-97
    25. Lipton, SA, Rosenberg, PA (1994) Excitatory amino acids as a final common pathway for neurologic disorders. N Engl J Med 330: pp. 613-22
    26. Lee, WW, Tajunisah, I, Sharmilla, K (2013) Retinal nerve fiber layer structure abnormalities in schizophrenia and its relationship to disease state: evidence from optical coherence tomography. Invest Ophthalmol Vis Sci 54: pp. 7785-92
    27. Parisi, V, Restuccia, R, Fattapposta, F (2001) Morphological and functional retinal impairment in Alzheimer鈥檚 disease patients. Clin Neurophysiol: Off J Int Fed Clin Neurophysiol 112: pp. 1860-7
    28. Lu, Y, Li, Z, Zhang, X (2010) Retinal nerve fiber layer structure abnormalities in early Alzheimer鈥檚 disease: evidence in optical coherence tomography. Neurosci Lett 480: pp. 69-72
    29. Inzelberg, R, Ramirez, JA, Nisipeanu, P (2004) Retinal nerve fiber layer thinning in Parkinson disease. Vis Res 44: pp. 2793-7
    30. Cabezon L, Ascaso F, Ramiro P, et al. Optical coherence tomography: a window into the brain of schizophrenic patients. Acta ophthalmology. 2012; 90:
    31. Ascaso, F, Cabezon, L, Quintanilla, MA (2010) Retinal nerve fiber layer thickness measured by optical coherence tomography in patients with schizophrenia: a short report. Eur J Psychiatry 24: pp. 227-35
    32. Chu, EM, Kolappan, M, Barnes, TR (2012) A window into the brain: an in vivo study of the retina in schizophrenia using optical coherence tomography. Psychiatry Res 203: pp. 89-94
    33. Skottun, BC, Skoyles, JR (2011) On identifying magnocellular and parvocellular responses on the basis of contrast-response functions. Schizophr Bull 37: pp. 23-6
    34. Ferrera, VP, Nealey, TA, Maunsell, JH (1994) Responses in macaque visual area V4 following inactivation of the parvocellular and magnocellular LGN pathways. J Neurosci: Off J Soc Neurosci 14: pp. 2080-8
    35. Nassi, JJ, Lyon, DC, Callaway, EM (2006) The parvocellular LGN provides a robust disynaptic input to the visual motion area MT. Neuron 50: pp. 319-27
    36. Sincich, LC, Park, KF, Wohlgemuth, MJ (2004) Bypassing V1: a direct geniculate input to area MT. Nat Neurosci 7: pp. 1123-8
    37. Nassi, JJ, Callaway, EM (2009) Parallel processing strategies of the primate visual system. Nature reviews. Neuroscience 10: pp. 360-72
    38. Shapley, R (1990) Visual sensitivity and parallel retinocortical channels. Annu Rev Psychol 41: pp. 635-58
    39. Maunsell, JH, Ghose, GM, Assad, JA (1999) Visual response latencies of magnocellular and parvocellular LGN neurons in macaque monkeys. Vis Neurosci 16: pp. 1-14
    40. Schiller, PH, Malpeli, JG (1978) Functional specificity of lateral geniculate nucleus laminae of the rhesus monkey. J Neurophysiol 41: pp. 788-97
    41. Shapley, R, Reid, RC, Kaplan, E (1991) Receptive fields of P and M cells in the monkey retina and their photoreceptor inputs. Neuroscience research. Suppl: Off J Japan Neurosci Soc 15: pp. S199-211
    42. Denison, RN, Vu, AT, Yacoub, E (2014) Functional mapping of the magnocellular and parvocellular subdivisions of human LGN. NeuroImage 102p2: pp. 358-69
    43. Cheong, SK, Tailby, C, Martin, PR (2011) Slow intrinsic rhythm in the koniocellular visual pathway. Proc Natl Acad Sci U S A 108: pp. 14659-63
    44. Martinez, A, Hillyard, SA, Dias, EC (2008) Magnocellular pathway impairment in schizophrenia: evidence from functional magnetic resonance imaging. J Neurosci: Off J Soc Neurosci 28: pp. 7492-500
    45. Skottun, BC, Skoyles, JR (2007) Contrast sensitivity and magnocellular functioning in schizophrenia. Vis Res 47: pp. 2923-33
    46. Kim, D, Wylie, G, Pasternak, R (2006) Magnocellular contributions to impaired motion processing in schizophrenia. Schizophr Res 82: pp. 1-8
    47. Doniger, GM, Foxe, JJ, Murray, MM (2002) Impaired visual object recognition and dorsal/ventral stream interaction in schizophrenia. Arch Gen Psychiatr 59: pp. 1011-20
    48. Merigan, WH, Maunsell, JH (1993) How parallel are the primate visual pathways?. Annu Rev Neurosci 16: pp. 369-402
    49. Merigan, WH, Maunsell, JH (1990) Macaque vision after magnocellular lateral geniculate lesions. Vis Neurosci 5: pp. 347-52
    50. Merigan, WH, Katz, LM, Maunsell, JH (1991) The effects of parvocellular lateral geniculate lesions on the acuity and contrast sensitivity of macaque monkeys. J Neurosci: Off J Soc Neurosci 11: pp. 994-1001
    51. Merigan, WH, Byrne, CE, Maunsell, JH (1991) Does primate motion perception depend on the magnocellular pathway?. J Neurosci: Off J Soc Neurosci 11: pp. 3422-9
    52. Tolhurst, DJ (1975) Reaction times in the detection of gratings by human observers: a probabilistic mechanism. Vis Res 15: pp. 1143-9
    53. Legge, GE (1978) Sustained and transient mechanisms in human vision: temporal and spatial properties. Vis Res 18: pp. 69-81
    54. Slaghuis, WL, Thompson, AK (2003) The effect of peripheral visual motion on focal contrast sensitivity in positive- and negative-symptom schizophrenia. Neuropsychologia 41: pp. 968-80
    55. Slaghuis, WL, Bishop, AM (2001) Luminance flicker sensitivity in positive- and negative-symptom schizophrenia. Exp Brain Res 138: pp. 88-99
    56. Slaghuis, WL (2004) Spatio-temporal luminance contrast sensitivity and visual backward masking in schizophrenia. Exp Brain Res 156: pp. 196-211
    57. Revheim, N, Butler, PD, Schechter, I (2006) Reading impairment and visual processing deficits in schizophrenia. Schizophr Res 87: pp. 238-45
    58. Lima, FB, Gracitelli, CP, Paranhos Junior, A (2013) Evaluation of magnocellular pathway abnormalities in schizophrenia: a frequency doubling technology study and clinical implications. Arq Bras Oftalmol 76: pp. 85-9
    59. Evans, MA, Shedden, JM, Hevenor, SJ (2000) The effect of variability of unattended information on global and local processing: evidence for lateralization at early stages of processing. Neuropsychologia 38: pp. 225-39
    60. Gutherie, AH, McDowell, JE, Hammond, BR (2006) Scotopic sensitivity in schizophrenia. Schizophr Res 84: pp. 378-85
    61. Delord, S, Ducato, MG, Pins, D (2006) Psychophysical assessment of magno- and parvocellular function in schizophrenia. Vis Neurosci 23: pp. 645-50
    62. Braus, DF, Weber-Fahr, W, Tost, H (2002) Sensory information processing in neuroleptic-naive first-episode schizophrenic patients: a functional magnetic resonance imaging study. Arch Gen Psychiatr 59: pp. 696-701
    63. Barch, DM, Mathews, JR, Buckner, RL (2003) Hemodynamic responses in visual, motor, and somatosensory cortices in schizophrenia. NeuroImage 20: pp. 1884-93
    64. Schwartz, BD, McGinn, T, Winstead, DK (1987) Disordered spatiotemporal processing in schizophrenics. Biol Psychiatr 22: pp. 688-98
    65. Saccuzzo, DP, Braff, DL (1981) Early information processing deficit in schizophrenia. New findings using schizophrenic subgroups and manic control subjects. Arch Gen Psychiatr 38: pp. 175-9
    66. Keri, S, Kelemen, O, Janka, Z (2005) Visual-perceptual dysfunctions are possible endophenotypes of schizophrenia: evidence from the psychophysical investigation of magnocellular and parvocellular pathways. Neuropsychology 19: pp. 649-56
    67. Schechter, I, Butler, PD, Silipo, G (2003) Magnocellular and parvocellular contributions to backward masking dysfunction in schizophrenia. Schizophr Res 64: pp. 91-101
    68. Gracitelli, CP, Lima Vaz, FB, Bressan, RA (2013) Visual field loss in schizophrenia: evaluation of magnocellular pathway dysfunction in schizophrenic patients and their parents. Clin Ophthalmol (Auckland, NZ) 7: pp. 1015-21
    69. Tootell, RB, Switkes, E, Silverman, MS (1988) Functional anatomy of macaque striate cortex II. Retinotopic organization. J Neurosci: Off J Soc Neurosci 8: pp. 1531-68
    70. Skottun, BC, Skoyles, JR (2009) Are masking abnormalities in schizophrenia limited to backward masking?. Int J Neurosci 119: pp. 88-104
    71. Slaghuis, WL, Bakker, VJ (1995) Forward and backward visual masking of contour by light in positive- and negative-symptom schizophrenia. J Abnorm Psychol 104: pp. 41-54
    72. Phillipson, OT, Harris, JP (1985) Perceptual changes in schizophrenia: a questionnaire survey. Psycholog Med 15: pp. 859-66
    73. Harris, JP, Calvert, JE, Leendertz, JA (1990) The influence of dopamine on spatial vision. Eye 4: pp. 806-12
    74. Bodis-Wollner, I Altered spatio-temporal contrast vision in Parkinson鈥檚 disease and MPTP-treated monkeys: the role of dopamine. In: Bodis-Wollner, I eds. (1988) Dopaminergic mechanisms in vision. A.R. Liss Inc, New York, pp. 205-20
    75. Brandies, R, Yehuda, S (2008) The possible role of retinal dopaminergic system in visual performance. Neurosci Biobehav Rev 32: pp. 611-56
    76. Calvert, JE, Harris, JP, Phillipson, OT (1992) Probing the visual system of Parkinson鈥檚 disease and chronic schizophrenic patients on depot neuroleptic using the tilt after effect. Clin Vis Sci 7: pp. 119-27
    77. Shuwairi, SM, Cronin-Golomb, A, McCarley, RW (2002) Color discrimination in schizophrenia. Schizophr Res 55: pp. 197-204
    78. Buttner, T, Kuhn, W, Muller, T (1996) Visual hallucinosis: the major clinical determinant of distorted chromatic contour perception in Parkinson鈥檚 disease. J Neural Transm (Vienna, Austria: 1996) 103: pp. 1195-204
    79. Paulus, W, Schwarz, G, Werner, A (1993) Impairment of retinal increment thresholds in Huntington鈥檚 disease. Ann Neurol 34: pp. 574-8
    80. Xivry JJ, O, Lefevre, P (2007) Saccades and pursuit: two outcomes of a single sensorimotor process. J Physiol 584: pp. 11
    81. Lisberger, SG, Evinger, C, Johanson, GW (1981) Relationship between eye acceleration and retinal image velocity during foveal smooth pursuit in man and monkey. J Neurophysiol 46: pp. 229-49
    82. Fender, DH, Nye, PW (1962) The effects of retinal image motion in a simple pattern recognition task. Kybernetik 1: pp. 192-9
    83. Engelken, EJ, Wolfe, JW (1979) A modeling approach to the assessment of smooth pursuit eye movement. Aviat Space Environ Med 50: pp. 1102-7
    84. Baloh, RW, Kumley, WE, Sills, AW (1976) Quantitative measurement of smooth pursuit eye movements. Ann Otol Rhinol Laryngol 85: pp. 111-9
    85. Yee, RD (1983) Eye movement recording as a clinical tool. Ophthalmology 90: pp. 211-22
    86. Diefendorf, AR, Dogde, R (1908) An experimental study of the ocular reactions of the insane from photographic records. Brain 31: pp. 451
    87. Mather, JA, Putchat, C (1982) Motor control of schizophrenics鈥擨. Oculomotor control of schizophrenics: a deficit in sensory processing, not strictly in motor control. J Psychiatr Res 17: pp. 343-60
    88. Bartfai, A, Levander, SE, Nyback, H (1985) Smooth pursuit eye tracking, neuropsychological test performance, and computed tomography in schizophrenia. Psychiatr Res 15: pp. 49-62
    89. Tanaka, M, Fukushima, K (1998) Neuronal responses related to smooth pursuit eye movements in the periarcuate cortical area of monkeys. J Neurophysiol 80: pp. 28-47
    90. Hong, LE, Tagamets, M, Avila, M (2005) Specific motion processing pathway deficit during eye tracking in schizophrenia: a performance-matched functional magnetic resonance imaging study. Biol Psychiatr 57: pp. 726-32
    91. Fox, PT, Fox, JM, Raichle, ME (1985) The role of cerebral cortex in the generation of voluntary saccades: a positron emission tomographic study. J Neurophysiol 54: pp. 348-69
    92. Fukushima, J, Fukushima, K, Chiba, T (1988) Disturbances of voluntary control of saccadic eye movements in schizophrenic patients. Biol Psychiatr 23: pp. 670-7
    93. Fukushima, J, Morita, N, Fukushima, K (1990) Voluntary control of saccadic eye movements in patients with schizophrenic and affective disorders. J Psychiatr Res 24: pp. 9-24
    94. Bender, J, Reuter, B, Mollers, D (2013) Neural correlates of impaired volitional action control in schizophrenia patients. Psychophysiology 50: pp. 872-84
    95. Picard, H, Seac鈥檋, A, Amado, I (2012) Impaired saccadic adaptation in schizophrenic patients with high neurological soft sign scores. Psychiatr Res 199: pp. 12-8
    96. Bolding, MS, Lahti, AC, White, D (2014) Vergence eye movements in patients with schizophrenia. Vis Res 102: pp. 64-70
    97. Abel, LA, Levin, S, Holzman, PS (1992) Abnormalities of smooth pursuit and saccadic control in schizophrenia and affective disorders. Vis Res 32: pp. 1009-14
    98. Silverstein, SM, Hatashita-Wong, M, Schenkel, LS (2006) Reduced top-down influences in contour detection in schizophrenia. Cogn Neuropsychiatry 11: pp. 112-32
    99. Onitsuka, T, Niznikiewicz, MA, Spencer, KM (2006) Functional and structural deficits in brain regions subserving face perception in schizophrenia. Am J Psychiatr 163: pp. 455-62
    100. Gottesman, II, Gould, TD (2003) The endophenotype concept in psychiatry: etymology and strategic intentions. Am J Psychiatr 160: pp. 636-45
    101. Chen, Y, Nakayama, K, Levy, DL (1999) Psychophysical isolation of a motion-processing deficit in schizophrenics and their relatives and its association with impaired smooth pursuit. Proc Natl Acad Sci U S A 96: pp. 4724-9
    102. Keri, S, Kelemen, O, Benedek, G (2001) Different trait markers for schizophrenia and bipolar disorder: a neurocognitive approach. Psychol Med 31: pp. 915-22
    103. Green, MF, Nuechterlein, KH, Mintz, J (1994) Backward masking in schizophrenia and mania. II. Specifying the visual channels. Arch Gen Psychiatr 51: pp. 945-51
    104. Green, MF, Nuechterlein, KH, Breitmeyer, B (1997) Backward masking performance in unaffected siblings of schizophrenic patients. Evidence for a vulnerability indicator. Arch Gen Psychiatr 54: pp. 465-72
  • 刊物主题:Psychiatry;
  • 出版者:Springer US
  • ISSN:1535-1645
文摘
Schizophrenia is a complex mental disorder associated with not only cognitive dysfunctions, such as memory and attention deficits, but also changes in basic sensory processing. Although most studies on schizophrenia have focused on disturbances in higher-order brain functions associated with the prefrontal cortex or frontal cortex, recent investigations have also reported abnormalities in low-level sensory processes, such as the visual system. At very early stages of the disease, schizophrenia patients frequently describe in detail symptoms of a disturbance in various aspects of visual perception that may lead to worse clinical symptoms and decrease in quality of life. Therefore, the aim of this review is to describe the various studies that have explored the visual issues in schizophrenia.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700