用户名: 密码: 验证码:
Geometry of contextuality from Grothendieck’s coset space
详细信息    查看全文
  • 作者:Michel Planat
  • 关键词:Quantum contextuality ; Dessins d’enfants ; Point/line geometries ; Coset space ; 11G32 ; 81P13 ; 81P45 ; 51A45 ; 14H57 ; 81Q35
  • 刊名:Quantum Information Processing
  • 出版年:2015
  • 出版时间:July 2015
  • 年:2015
  • 卷:14
  • 期:7
  • 页码:2563-2575
  • 全文大小:791 KB
  • 参考文献:1.Kochen, S., Specker, E.P.: The problem of hidden variables in quantum mechanics. J. Math. Mech. 17, 59-7 (1967)MATH MathSciNet
    2.Waegell, M., Aravind, P.K.: Parity proofs of the Kochen-Specker theorem based on the \(120\) -cell. Found. Phys. 44, 1085-095 (2014)MATH MathSciNet ADS View Article
    3.Howard, M., Brennan, E., Vala, J.: Quantum contextuality with stabilizer states. Entropy 15, 2340-362 (2013)MATH MathSciNet ADS View Article
    4.Spekkens, R.W.: The status of determinism on proofs of the impossibility of a noncontextual model of quantum theory. Found. Phys. 44, 1125-155 (2014)MATH MathSciNet View Article
    5.Mermin, N.D.: Hidden variables and two theorems of John Bell. Rev. Mod. Phys. 65, 803-15 (1993)MathSciNet ADS View Article
    6.Planat, M.: On small proofs of the Bell–Kochen–Specker theorem for two, three and four qubits. Eur. Phys. J. Plus 127, 86 (2012)View Article
    7.Cabello, A.: Experimentally testable state-independent quantum contextuality. Phys. Rev. Lett. 101, 2109401 (2008)MathSciNet
    8.Planat, M.: It from qubit: how to draw quantum contextuality. Information 5, 209-18 (2014)View Article
    9.Planat, M., Giorgetti, A., Holweck, F., Saniga, M.: Quantum contextual finite geometries from dessins d’enfants. Int. J. Geom. Method. Mod. Phys. 12, 1550067 (2015)View Article
    10.Planat, M.: Drawing quantum contextuality with ‘dessins d’enfants- In: Aguirre, A., Foster, B., Meralli, Z. (eds.) Frontiers Collection: it from Bit or Bit from It, p. 25. Springer, Berlin (2015)
    11.Grothendieck, A.: Sketch of a programme, written in 1984 and reprinted with translation. In: Schneps, L., Lochak, P. (eds.) Geometric Galois Actions: 1. Around Grothendieck’s Esquisse d’un Programme, and 2. The inverse Galois problem, Moduli Spaces and Mapping Class Groups. Cambridge University Press, Cambridge (1997)
    12.Abramsky, S., Brandenburger, A.: The sheaf-theoretic structure of non-locality and contextuality. New. J. Phys. 13, 113036 (2011)ADS View Article
    13.Bosma, W., Cannon, J.J., Fieker, C., Steel, A. (eds.): It Handbook of Magma Functions 2.20 Ed. (2014), p. 5583. Sydney
    14.Jones, G.A., Singerman, D.: Theory of maps on orientable surfaces. Proc. Lond. Math. Soc. 37, 273-07 (1978)MATH MathSciNet View Article
    15.Lando, S.K., Zvonkin, A.K.: Graphs on Surfaces and Their Applications. Springer, Berlin (2004)MATH View Article
    16.Walsh, T.R.: Hypermaps versus bipartite maps. J. Comb. Theory Ser. B 18(163), 155 (1975)MATH View Article
    17.Levay, P., Saniga, M., Vrna, P.: Three-qubit operators, the split Cayley hexagon of order two and Black Holes. Phys. Rev. D 78, 124022 (2008)ADS View Article
    18.Planat, M., Saniga, M., Holweck, F.: Distinguished three-qubit ’magicity-via automorphisms of the split Cayley hexagon. Quantum Inf. Process. 12, 2535-549 (2013)MATH MathSciNet ADS View Article
    19.Mansfield, S.: The mathematical structure of non-locality & contextuality, Thesis. http://?www.?cs.?ox.?ac.?uk/?people/?shane.?mansfield/?DPhilThesis-ShaneMansfield (2013)
    20.Grudka, A., Horodecki, K., Horodecki, M., Horodecki, P., Horodecki, R., Joshi, P., Klobus, W., Wójcik, A.: Quantifying contextuality. Phys. Rev. Lett. 112, 120401 (2014)ADS View Article
    21.Durham, I.T.: An order-theoretic quantification of contextuality. Information 5, 508-25 (2014)View Article
    22.Frohard, D., Johnson, P.: Geometric hyperplanes in generalized hexagons of order \((2,2)\) . Commun. Algebra 22, 773-97 (1994)View Article
    23.Green, R.M., Saniga, M.: The Veldkamp space of the smallest slim dense near hexagon. Int. J. Geom. Method. Mod. Phys. 10, 150082 (2013)MathSciNet View Article
    24.De Bruyn, B.: On the uniqueness of the generalized octagon of order (2, 4). J. Algebra 421, 369-93 (2015)MathSciNet View Article
  • 作者单位:Michel Planat (1)

    1. CNRS, Institut FEMTO-ST, 15 B Avenue des Montboucons, 25044, Besan?on, France
  • 刊物类别:Physics and Astronomy
  • 刊物主题:Physics
    Physics
    Mathematics
    Engineering, general
    Computer Science, general
    Characterization and Evaluation Materials
  • 出版者:Springer Netherlands
  • ISSN:1573-1332
文摘
The geometry of cosets in the subgroups \(H\) of the two-generator free group \(G=\langle a,b\rangle \) nicely fits, via Grothendieck’s dessins d’enfants, the geometry of commutation for quantum observables. In previous work, it was established that dessins stabilize point-line geometries whose incidence structure reflects the commutation of (generalized) Pauli operators. Now we find that the nonexistence of a dessin for which the commutator \((a,b)=a^{-1}b^{-1}ab\) precisely corresponds to the commutator of quantum observables \([\mathcal {A},\mathcal {B}] = \mathcal {A}\mathcal {B}-\mathcal {B}\mathcal {A}\) on all lines of the geometry is a signature of quantum contextuality. This occurs first at index \(|G\):\(H|=9\) in Mermin’s square and at index \(10\) in Mermin’s pentagram, as expected. Commuting sets of \(n\)-qubit observables with \(n>3\) are found to be contextual as well as most generalized polygons. A geometrical contextuality measure is introduced.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700