用户名: 密码: 验证码:
TRPV4 as a therapeutic target for joint diseases
详细信息    查看全文
  • 作者:Amy L. McNulty (1)
    Holly A. Leddy (1)
    Wolfgang Liedtke (2)
    Farshid Guilak (1)

    1. Department of Orthopaedic Surgery
    ; Duke University Medical Center ; DUMC 3093 ; Durham ; NC ; 27710 ; USA
    2. Department of Neurology and Duke University Clinics for Pain and Palliative Care
    ; Duke University Medical Center ; DUMC 2900 ; Durham ; NC ; 27710 ; USA
  • 关键词:Mechanotransduction ; Proteinase ; activated receptor 2 ; Chondrocyte ; Osteoblast ; Osteoclast ; Tissue engineering
  • 刊名:Naunyn-Schmiedeberg's Archives of Pharmacology
  • 出版年:2015
  • 出版时间:April 2015
  • 年:2015
  • 卷:388
  • 期:4
  • 页码:437-450
  • 全文大小:2,246 KB
  • 参考文献:1. Akagi, R, Sasho, T, Saito, M, Endo, J, Yamaguchi, S, Muramatsu, Y, Mukoyama, S, Akatsu, Y, Katsuragi, J, Fukawa, T, Takahashi, K (2014) Effective knock down of matrix metalloproteinase-13 by an intra-articular injection of small interfering RNA (siRNA) in a murine surgically-induced osteoarthritis model. J Orthop Res 32: pp. 1175-1180
    2. Alenius, GM, Jonsson, S, Wallberg Jonsson, S, Ny, A, Rantapaa Dahlqvist, S (2001) Matrix metalloproteinase 9 (MMP-9) in patients with psoriatic arthritis and rheumatoid arthritis. Clin Exp Rheumatol 19: pp. 760
    3. Alessandri-Haber, N, Joseph, E, Dina, OA, Liedtke, W, Levine, JD (2005) TRPV4 mediates pain-related behavior induced by mild hypertonic stimuli in the presence of inflammatory mediator. Pain 118: pp. 70-79
    4. Amadesi, S, Nie, J, Vergnolle, N, Cottrell, GS, Grady, EF, Trevisani, M, Manni, C, Geppetti, P, McRoberts, JA, Ennes, H, Davis, JB, Mayer, EA, Bunnett, NW (2004) Protease-activated receptor 2 sensitizes the capsaicin receptor transient receptor potential vanilloid receptor 1 to induce hyperalgesia. J Neurosci 24: pp. 4300-4312
    5. Barbour KE, Helmick CG, Theis KA, Murphy LB, Hootman JM, Brady TJ, Cheng YJ (2013) Prevalence of Doctor-diagnosed arthritis and arthritis-attributable activity limitation鈥擴nited States, 2010鈥?012. In: Moolenaar RL (ed) Morbidity and mortality weekly report centers for disease control and prevention, Washington, DC, pp. 869鈥?73
    6. Bignold, LP, Lykke, AW (1975) Increased vascular permeability evoked by mechanical trauma and haemarthrosis in synovium of the rat. Pathology 7: pp. 263-271
    7. Bluteau, G, Conrozier, T, Mathieu, P, Vignon, E, Herbage, D, Mallein-Gerin, F (2001) Matrix metalloproteinase-1, 鈭?, 鈭?3 and aggrecanase-1 and 鈭? are differentially expressed in experimental osteoarthritis. Biochim Biophys Acta 1526: pp. 147-158
    8. Bohm, SK, Khitin, LM, Grady, EF, Aponte, G, Payan, DG, Bunnett, NW (1996) Mechanisms of desensitization and resensitization of proteinase-activated receptor-2. J Biol Chem 271: pp. 22003-22016
    9. Bourque, CW, Guilak, F, Liedtke, W (2012) A TRP that makes us feel hyper. J Physiol 590: pp. 1779-1780
    10. Brama, PA, TeKoppele, JM, Beekman, B, Weeren, PR, Barneveld, A (1998) Matrix metalloproteinase activity in equine synovial fluid: influence of age, osteoarthritis, and osteochondrosis. Ann Rheum Dis 57: pp. 697-699
    11. Brierley, SM, Hughes, PA, Page, AJ, Kwan, KY, Martin, CM, O鈥橠onnell, TA, Cooper, NJ, Harrington, AM, Adam, B, Liebregts, T, Holtmann, G, Corey, DP, Rychkov, GY, Blackshaw, LA (2009) The ion channel TRPA1 is required for normal mechanosensation and is modulated by algesic stimuli. Gastroenterology 137: pp. e2083
    12. Bushell, T (2007) The emergence of proteinase-activated receptor-2 as a novel target for the treatment of inflammation-related CNS disorders. J Physiol 581: pp. 7-16
    13. Busso, N, Frasnelli, M, Feifel, R, Cenni, B, Steinhoff, M, Hamilton, J, So, A (2007) Evaluation of protease-activated receptor 2 in murine models of arthritis. Arthritis Rheum 56: pp. 101-107
    14. Camacho, N, Krakow, D, Johnykutty, S, Katzman, PJ, Pepkowitz, S, Vriens, J, Nilius, B, Boyce, BF, Cohn, DH (2010) Dominant TRPV4 mutations in nonlethal and lethal metatropic dysplasia. Am J Med Genet A 152A: pp. 1169-1177
    15. Cameron, TL, Belluoccio, D, Farlie, PG, Brachvogel, B, Bateman, JF (2009) Global comparative transcriptome analysis of cartilage formation in vivo. BMC Dev Biol 9: pp. 20
    16. Cattaruzza, F, Spreadbury, I, Miranda-Morales, M, Grady, EF, Vanner, S, Bunnett, NW (2010) Transient receptor potential ankyrin-1 has a major role in mediating visceral pain in mice. Am J Physiol Gastrointest Liver Physiol 298: pp. G81-91
    17. Cella, G, Fiocco, U, Palla, A (1997) The thrombin-antithrombin complex in rheumatoid arthritis. J Rheumatol 24: pp. 410
    18. Cenac, N, Altier, C, Chapman, K, Liedtke, W, Zamponi, G, Vergnolle, N (2008) Transient receptor potential vanilloid-4 has a major role in visceral hypersensitivity symptoms. Gastroenterology 135: pp. 937-946
    19. Cevikbas, F, Wang, X, Akiyama, T, Kempkes, C, Savinko, T, Antal, A, Kukova, G, Buhl, T, Ikoma, A, Buddenkotte, J, Soumelis, V, Feld, M, Alenius, H, Dillon, SR, Carstens, E, Homey, B, Basbaum, A, Steinhoff, M (2014) A sensory neuron-expressed IL-31 receptor mediates T helper cell-dependent itch: Involvement of TRPV1 and TRPA1. J Allergy Clin Immunol 133: pp. 448-460
    20. Chen, Y, Yang, C, Wang, ZJ (2011) Proteinase-activated receptor 2 sensitizes transient receptor potential vanilloid 1, transient receptor potential vanilloid 4, and transient receptor potential ankyrin 1 in paclitaxel-induced neuropathic pain. Neuroscience 193: pp. 440-451
    21. Chen, Y, Williams, SH, McNulty, AL, Hong, JH, Lee, SH, Rothfusz, NE, Parekh, PK, Moore, C, Gereau, RW, Taylor, AB, Wang, F, Guilak, F, Liedtke, W (2013) Temporomandibular joint pain: a critical role for Trpv4 in the trigeminal ganglion. Pain 154: pp. 1295-1304
    22. Chen Y, Kanju P, Fang Q, Lee S, Parekh P, Lee W, Moore C, Brenner D, Gereau R, Wang F, Liedtke W (2014) TRPV4 is necessary for trigeminal irritant pain and functions as a cellular formalin receptor. Pain. doi:10.1016/j.pain.2014.09.033
    23. Choi, HM, Lee, YA, Lee, SH, Hong, SJ, Hahm, DH, Choi, SY, Yang, HI, Yoo, MC, Kim, KS (2009) Adiponectin may contribute to synovitis and joint destruction in rheumatoid arthritis by stimulating vascular endothelial growth factor, matrix metalloproteinase-1, and matrix metalloproteinase-13 expression in fibroblast-like synoviocytes more than proinflammatory mediators. Arthritis Res Ther 11: pp. R161
    24. Clark, AL, Votta, BJ, Kumar, S, Liedtke, W, Guilak, F (2010) Chondroprotective role of the osmotically sensitive ion channel transient receptor potential vanilloid 4: age- and sex-dependent progression of osteoarthritis in Trpv4-deficient mice. Arthritis Rheum 62: pp. 2973-2983
    25. Clark, AK, Grist, J, Al-Kashi, A, Perretti, M, Malcangio, M (2012) Spinal cathepsin S and fractalkine contribute to chronic pain in the collagen-induced arthritis model. Arthritis Rheum 64: pp. 2038-2047
    26. Coelho, AM, Ossovskaya, V, Bunnett, NW (2003) Proteinase-activated receptor-2: physiological and pathophysiological roles. Curr Med Chem Cardiovasc Hematol Agents 1: pp. 61-72
    27. Connor, AM, Mahomed, N, Gandhi, R, Keystone, EC, Berger, SA (2012) TNFalpha modulates protein degradation pathways in rheumatoid arthritis synovial fibroblasts. Arthritis Res Ther 14: pp. R62
    28. Cowin, SC, Weinbaum, S, Zeng, Y (1995) A case for bone canaliculi as the anatomical site of strain generated potentials. J Biomech 28: pp. 1281-1297
    29. Dai, Y, Moriyama, T, Higashi, T, Togashi, K, Kobayashi, K, Yamanaka, H, Tominaga, M, Noguchi, K (2004) Proteinase-activated receptor 2-mediated potentiation of transient receptor potential vanilloid subfamily 1 activity reveals a mechanism for proteinase-induced inflammatory pain. J Neurosci 24: pp. 4293-4299
    30. Dai, Y, Wang, S, Tominaga, M, Yamamoto, S, Fukuoka, T, Higashi, T, Kobayashi, K, Obata, K, Yamanaka, H, Noguchi, K (2007) Sensitization of TRPA1 by PAR2 contributes to the sensation of inflammatory pain. J Clin Invest 117: pp. 1979-1987
    31. Denadai-Souza, A, Martin, L, Paula, MA, Avellar, MC, Muscara, MN, Vergnolle, N, Cenac, N (2012) Role of transient receptor potential vanilloid 4 in rat joint inflammation. Arthritis Rheum 64: pp. 1848-1858
    32. Dery, O, Corvera, CU, Steinhoff, M, Bunnett, NW (1998) Proteinase-activated receptors: novel mechanisms of signaling by serine proteases. Am J Physiol 274: pp. C1429-1452
    33. Eleswarapu, SV, Athanasiou, KA (2013) TRPV4 channel activation improves the tensile properties of self-assembled articular cartilage constructs. Acta Biomater 9: pp. 5554-5561
    34. Erickson, GR, Northrup, DL, Guilak, F (2003) Hypo-osmotic stress induces calcium-dependent actin reorganization in articular chondrocytes. Osteoarthritis Cartilage 11: pp. 187-197
    35. Galasso, O, Familiari, F, Gori, M, Gasparini, G (2012) Recent findings on the role of gelatinases (matrix metalloproteinase-2 and 鈭?) in osteoarthritis. Adv Orthop 2012: pp. 834208
    36. Goldbach-Mansky, R, Suson, S, Wesley, R, Hack, CE, El-Gabalawy, HS, Tak, PP (2005) Raised granzyme B levels are associated with erosions in patients with early rheumatoid factor positive rheumatoid arthritis. Ann Rheum Dis 64: pp. 715-721
    37. Grace, MS, Lieu, T, Darby, B, Abogadie, FC, Veldhuis, N, Bunnett, NW, McIntyre, P (2014) The tyrosine kinase inhibitor bafetinib inhibits PAR2-induced activation of TRPV4 channels in vitro and pain in vivo. Br J Pharmacol 171: pp. 3881-3894
    38. Grant, AD, Cottrell, GS, Amadesi, S, Trevisani, M, Nicoletti, P, Materazzi, S, Altier, C, Cenac, N, Zamponi, GW, Bautista-Cruz, F, Lopez, CB, Joseph, EK, Levine, JD, Liedtke, W, Vanner, S, Vergnolle, N, Geppetti, P, Bunnett, NW (2007) Protease-activated receptor 2 sensitizes the transient receptor potential vanilloid 4 ion channel to cause mechanical hyperalgesia in mice. J Physiol 578: pp. 715-733
    39. Guilak, F (2011) Biomechanical factors in osteoarthritis. Best Pract Res Clin Rheumatol 25: pp. 815-823
    40. Guilak, F, Hung, CT Physical regulation of cartilage metabolism. In: Mow, VC, Huiskes, R eds. (2005) Basic orthopaedic biomechanics and mechanobiology. Lippincott, Williams & Wilkins, Philedalphia, pp. 259-300
    41. Guilak, F, Butler, DL, Goldstein, SA, Baaijens, FP (2014) Biomechanics and mechanobiology in functional tissue engineering. J Biomech 47: pp. 1933-1940
    42. Gupta, K, Shukla, M, Cowland, JB, Malemud, CJ, Haqqi, TM (2007) Neutrophil gelatinase-associated lipocalin is expressed in osteoarthritis and forms a complex with matrix metalloproteinase 9. Arthritis Rheum 56: pp. 3326-3335
    43. Hasegawa, M, Nakoshi, Y, Iino, T, Sudo, A, Segawa, T, Maeda, M, Yoshida, T, Uchida, A (2009) Thrombin-cleaved osteopontin in synovial fluid of subjects with rheumatoid arthritis. J Rheumatol 36: pp. 240-245
    44. Hasegawa, M, Segawa, T, Maeda, M, Yoshida, T, Sudo, A (2011) Thrombin-cleaved osteopontin levels in synovial fluid correlate with disease severity of knee osteoarthritis. J Rheumatol 38: pp. 129-134
    45. Hashimoto, Y, Kakegawa, H, Narita, Y, Hachiya, Y, Hayakawa, T, Kos, J, Turk, V, Katunuma, N (2001) Significance of cathepsin B accumulation in synovial fluid of rheumatoid arthritis. Biochem Biophys Res Commun 283: pp. 334-339
    46. Hdud, IM, El-Shafei, AA, Loughna, P, Barrett-Jolley, R, Mobasheri, A (2012) Expression of Transient Receptor Potential Vanilloid (TRPV) channels in different passages of articular chondrocytes. Int J Mol Sci 13: pp. 4433-4445
    47. Hdud, IM, Mobasheri, A, Loughna, PT (2014) Effects of cyclic equibiaxial mechanical stretch on alpha-BK and TRPV4 expression in equine chondrocytes. Springer Plus 3: pp. 59
    48. Helyes, Z, Sandor, K, Borbely, E, Tekus, V, Pinter, E, Elekes, K, Toth, DM, Szolcsanyi, J, McDougall, JJ (2010) Involvement of transient receptor potential vanilloid 1 receptors in protease-activated receptor-2-induced joint inflammation and nociception. Eur J Pain 14: pp. 351-358
    49. Horwich, MD, Zamore, PD (2008) Design and delivery of antisense oligonucleotides to block microRNA function in cultured Drosophila and human cells. Nat Protoc 3: pp. 1537-1549
    50. Hu, F, Zhu, W, Wang, L (2013) MicroRNA-203 up-regulates nitric oxide expression in temporomandibular joint chondrocytes via targeting TRPV4. Arch Oral Biol 58: pp. 192-199
    51. Itoh, Y, Hatano, N, Hayashi, H, Onozaki, K, Miyazawa, K, Muraki, K (2009) An environmental sensor, TRPV4 is a novel regulator of intracellular Ca2+ in human synoviocytes. Am J Physiol Cell Physiol 297: pp. C1082-1090
    52. Jablonski, CL, Ferguson, S, Pozzi, A, Clark, AL (2014) Integrin alpha1beta1 participates in chondrocyte transduction of osmotic stress. Biochem Biophys Res Commun 445: pp. 184-190
    53. Jia, X, Zhang, H, Cao, X, Yin, Y, Zhang, B (2014) Activation of TRPV1 mediates thymic stromal lymphopoietin release via the Ca(2+)/NFAT pathway in airway epithelial cells. FEBS Lett 588: pp. 3047-3054
    54. Jing, D, Baik, AD, Lu, XL, Zhou, B, Lai, X, Wang, L, Luo, E, Guo, XE (2014) In situ intracellular calcium oscillations in osteocytes in intact mouse long bones under dynamic mechanical loading. FASEB J 28: pp. 1582-1592
    55. Johnson, VL, Hunter, DJ (2014) The epidemiology of osteoarthritis. Best Pract Res Clin Rheumatol 28: pp. 5-15
    56. Kanke, T, Takizawa, T, Kabeya, M, Kawabata, A (2005) Physiology and pathophysiology of proteinase-activated receptors (PARs): PAR-2 as a potential therapeutic target. J Pharmacol Sci 97: pp. 38-42
    57. Kato, K, Morita, I (2011) Acidosis environment promotes osteoclast formation by acting on the last phase of preosteoclast differentiation: a study to elucidate the action points of acidosis and search for putative target molecules. Eur J Pharmacol 663: pp. 27-39
    58. Kawabata, A (2002) PAR-2: structure, function and relevance to human diseases of the gastric mucosa. Expert Rev Mol Med 4: pp. 1-17
    59. Kiselyov, K, Soyombo, A, Muallem, S (2007) TRPpathies. J Physiol 578: pp. 641-653
    60. Kochukov, MY, McNearney, TA, Fu, Y, Westlund, KN (2006) Thermosensitive TRP ion channels mediate cytosolic calcium response in human synoviocytes. Am J Physiol Cell Physiol 291: pp. C424-432
    61. Kochukov, MY, McNearney, TA, Yin, H, Zhang, L, Ma, F, Ponomareva, L, Abshire, S, Westlund, KN (2009) Tumor necrosis factor-alpha (TNF-alpha) enhances functional thermal and chemical responses of TRP cation channels in human synoviocytes. Mol Pain 5: pp. 49
    62. Kong, W, McConalogue, K, Khitin, LM, Hollenberg, MD, Payan, DG, Bohm, SK, Bunnett, NW (1997) Luminal trypsin may regulate enterocytes through proteinase-activated receptor 2. Proc Natl Acad Sci U S A 94: pp. 8884-8889
    63. Krakow, D, Vriens, J, Camacho, N, Luong, P, Deixler, H, Funari, TL, Bacino, CA, Irons, MB, Holm, IA, Sadler, L, Okenfuss, EB, Janssens, A, Voets, T, Rimoin, DL, Lachman, RS, Nilius, B, Cohn, DH (2009) Mutations in the gene encoding the calcium-permeable ion channel TRPV4 produce spondylometaphyseal dysplasia, Kozlowski type and metatropic dysplasia. Am J Hum Genet 84: pp. 307-315
    64. Kummer, JA, Tak, PP, Brinkman, BM, Tilborg, AA, Kamp, AM, Verweij, CL, Daha, MR, Meinders, AE, Hack, CE, Breedveld, FC (1994) Expression of granzymes A and B in synovial tissue from patients with rheumatoid arthritis and osteoarthritis. Clin Immunol Immunopathol 73: pp. 88-95
    65. Lamande, SR, Yuan, Y, Gresshoff, IL, Rowley, L, Belluoccio, D, Kaluarachchi, K, Little, CB, Botzenhart, E, Zerres, K, Amor, DJ, Cole, WG, Savarirayan, R, McIntyre, P, Bateman, JF (2011) Mutations in TRPV4 cause an inherited arthropathy of hands and feet. Nat Genet 43: pp. 1142-1146
    66. Lambert, C, Dubuc, JE, Montell, E, Verges, J, Munaut, C, Noel, A, Henrotin, Y (2014) Gene expression pattern of cells from inflamed and normal areas of osteoarthritis synovial membrane. Arthritis Rheum 66: pp. 960-968
    67. Leddy, HA, McNulty, AL, Guilak, F, Liedtke, W (2014) Unraveling the mechanism of by which TRPV4 mutations cause skeletal dysplasias. Rare Dis 2: pp. e962971
    68. Leddy, HA, McNulty, AL, Lee, SH, Rothfusz, NE, Gloss, B, Kirby, ML, Hutson, MR, Cohn, DH, Guilak, F, Liedtke, W (2014) Follistatin in chondrocytes: the link between TRPV4 channelopathies and skeletal malformations. FASEB J 28: pp. 2525-2537
    69. Lee, W, Leddy, HA, Chen, Y, Lee, SH, Zelenski, NA, McNulty, AL, Wu, J, Beicker, KN, Coles, J, Zauscher, S, Grandl, J, Sachs, F, Guilak, F, Liedtke, WB (2014) Synergy between Piezo1 and Piezo2 channels confers high-strain mechanosensitivity to articular cartilage. Proc Natl Acad Sci U S A 111: pp. E5114-5122
    70. Lieben, L, Carmeliet, G (2012) The involvement of TRP channels in bone homeostasis. Front Endocrinol 3: pp. 99
    71. Liedtke, W, Friedman, JM (2003) Abnormal osmotic regulation in trpv4鈭?鈭?mice. Proc Natl Acad Sci U S A 100: pp. 13698-13703
    72. Liedtke, W, Kim, C (2005) Functionality of the TRPV subfamily of TRP ion channels: add mechano-TRP and osmo-TRP to the lexicon!. Cell Mol Life Sci 62: pp. 2985-3001
    73. Liedtke, W, Choe, Y, Marti-Renom, MA, Bell, AM, Denis, CS, Sali, A, Hudspeth, AJ, Friedman, JM, Heller, S (2000) Vanilloid receptor-related osmotically activated channel (VR-OAC), a candidate vertebrate osmoreceptor. Cell 103: pp. 525-535
    74. Liedtke, W, Tobin, DM, Bargmann, CI, Friedman, JM (2003) Mammalian TRPV4 (VR-OAC) directs behavioral responses to osmotic and mechanical stimuli in Caenorhabditis elegans. Proc Natl Acad Sci U S A 100: pp. 14531-14536
    75. Loeser, RF, Goldring, SR, Scanzello, CR, Goldring, MB (2012) Osteoarthritis: a disease of the joint as an organ. Arthritis Rheum 64: pp. 1697-1707
    76. Masuyama, R, Vriens, J, Voets, T, Karashima, Y, Owsianik, G, Vennekens, R, Lieben, L, Torrekens, S, Moermans, K, Vanden Bosch, A, Bouillon, R, Nilius, B, Carmeliet, G (2008) TRPV4-mediated calcium influx regulates terminal differentiation of osteoclasts. Cell Metab 8: pp. 257-265
    77. Masuyama, R, Mizuno, A, Komori, H, Kajiya, H, Uekawa, A, Kitaura, H, Okabe, K, Ohyama, K, Komori, T (2012) Calcium/calmodulin-signaling supports TRPV4 activation in osteoclasts and regulates bone mass. J Bone Miner Res 27: pp. 1708-1721
    78. McCarty, WJ, Masuda, K, Sah, RL (2011) Fluid movement and joint capsule strains due to flexion in rabbit knees. J Biomech 44: pp. 2761-2767
    79. McEntagart, M (2012) TRPV4 axonal neuropathy spectrum disorder. J Clin Neurosci 19: pp. 927-933
    80. Michael, ES, Kuliopulos, A, Covic, L, Steer, ML, Perides, G (2013) Pharmacological inhibition of PAR2 with the pepducin P2pal-18S protects mice against acute experimental biliary pancreatitis. Am J Physiol Gastrointest Liver Physiol 304: pp. G516-526
    81. Mizoguchi, F, Mizuno, A, Hayata, T, Nakashima, K, Heller, S, Ushida, T, Sokabe, M, Miyasaka, N, Suzuki, M, Ezura, Y, Noda, M (2008) Transient receptor potential vanilloid 4 deficiency suppresses unloading-induced bone loss. J Cell Physiol 216: pp. 47-53
    82. Moffatt, JD (2004) Proteinase-activated receptor pharmacology: trickier and trickier. Br J Pharmacol 143: pp. 441
    83. Moore, C, Cevikbas, F, Pasolli, HA, Chen, Y, Kong, W, Kempkes, C, Parekh, P, Lee, SH, Kontchou, NA, Yeh, I, Jokerst, NM, Fuchs, E, Steinhoff, M, Liedtke, WB (2013) UVB radiation generates sunburn pain and affects skin by activating epidermal TRPV4 ion channels and triggering endothelin-1 signaling. Proc Natl Acad Sci U S A 110: pp. E3225-3234
    84. Morris, R, Winyard, PG, Blake, DR, Morris, CJ (1994) Thrombin in inflammation and healing: relevance to rheumatoid arthritis. Ann Rheum Dis 53: pp. 72-79
    85. Mow, VC, Ratcliffe, A, Poole, AR (1992) Cartilage and diarthrodial joints as paradigms for hierarchical materials and structures. Biomaterials 13: pp. 67-97
    86. Mow, VC, Bachrach, NM, Setton, LA, Guilak, F Stress, strain, pressure and flow fields in articular cartilage and chondrocytes. In: Mow, VC, Tran-Son-Tay, R, Guilak, F, Hochmuth, RM eds. (1994) Cell mechanics and cellular engineering. Springer, New York, pp. 345-379
    87. Muramatsu, S, Wakabayashi, M, Ohno, T, Amano, K, Ooishi, R, Sugahara, T, Shiojiri, S, Tashiro, K, Suzuki, Y, Nishimura, R, Kuhara, S, Sugano, S, Yoneda, T, Matsuda, A (2007) Functional gene screening system identified TRPV4 as a regulator of chondrogenic differentiation. J Biol Chem 282: pp. 32158-32167
    88. Nakagawa, TY, Brissette, WH, Lira, PD, Griffiths, RJ, Petrushova, N, Stock, J, McNeish, JD, Eastman, SE, Howard, ED, Clarke, SR, Rosloniec, EF, Elliott, EA, Rudensky, AY (1999) Impaired invariant chain degradation and antigen presentation and diminished collagen-induced arthritis in cathepsin S null mice. Immunity 10: pp. 207-217
    89. Nilius, B, Voets, T (2004) Diversity of TRP channel activation. Novartis Found Symp 258: pp. 140-149
    90. Nilius, B, Voets, T (2013) The puzzle of TRPV4 channelopathies. EMBO Rep 14: pp. 152-163
    91. Nishimura, G, Lausch, E, Savarirayan, R, Shiba, M, Spranger, J, Zabel, B, Ikegawa, S, Superti-Furga, A, Unger, S (2012) TRPV4-associated skeletal dysplasias. Am J Med Genet C Semin Med Genet 160C: pp. 190-204
    92. Noss, EH, Chang, SK, Watts, GF, Brenner, MB (2011) Modulation of matrix metalloproteinase production by rheumatoid arthritis synovial fibroblasts after cadherin 11 engagement. Arthritis Rheum 63: pp. 3768-3778
    93. O鈥機onor, CJ, Griffin, TM, Liedtke, W, Guilak, F (2013) Increased susceptibility of Trpv4-deficient mice to obesity and obesity-induced osteoarthritis with very high-fat diet. Ann Rheum Dis 72: pp. 300-304
    94. O鈥機onor, CJ, Leddy, HA, Benefield, HC, Liedtke, WB, Guilak, F (2014) TRPV4-mediated mechanotransduction regulates the metabolic response of chondrocytes to dynamic loading. Proc Natl Acad Sci U S A 111: pp. 1316-1321
    95. Okada, Y, Takeuchi, N, Tomita, K, Nakanishi, I, Nagase, H (1989) Immunolocalization of matrix metalloproteinase 3 (stromelysin) in rheumatoid synovioblasts (B cells): correlation with rheumatoid arthritis. Ann Rheum Dis 48: pp. 645-653
    96. Okuhara, DY, Hsia, AY, Xie, M (2007) Transient receptor potential channels as drug targets. Expert Opin Ther Targets 11: pp. 391-401
    97. Opdenakker, G, Masure, S, Grillet, B, Damme, J (1991) Cytokine-mediated regulation of human leukocyte gelatinases and role in arthritis. Lymphokine Cytokine Res 10: pp. 317-324
    98. Phan, MN, Leddy, HA, Votta, BJ, Kumar, S, Levy, DS, Lipshutz, DB, Lee, SH, Liedtke, W, Guilak, F (2009) Functional characterization of TRPV4 as an osmotically sensitive ion channel in porcine articular chondrocytes. Arthritis Rheum 60: pp. 3028-3037
    99. Poole AR, Nelson F, Dahlberg L, Tchetina E, Kobayashi M, Yasuda T, Laverty S, Squires G, Kojima T, Wu W, Billinghurst RC (2003) Proteolysis of the collagen fibril in osteoarthritis. Biochem Soc Symp: 115鈥?23
    100. Poole, DP, Amadesi, S, Veldhuis, NA, Abogadie, FC, Lieu, T, Darby, W, Liedtke, W, Lew, MJ, McIntyre, P, Bunnett, NW (2013) Protease-activated receptor 2 (PAR2) protein and transient receptor potential vanilloid 4 (TRPV4) protein coupling is required for sustained inflammatory signaling. J Biol Chem 288: pp. 5790-5802
    101. Posthumus, MD, Limburg, PC, Westra, J, Leeuwen, MA, Rijswijk, MH (2003) Serum matrix metalloproteinase 3 levels in comparison to C-reactive protein in periods with and without progression of radiological damage in patients with early rheumatoid arthritis. Clin Exp Rheumatol 21: pp. 465-472
    102. Pozgan, U, Caglic, D, Rozman, B, Nagase, H, Turk, V, Turk, B (2010) Expression and activity profiling of selected cysteine cathepsins and matrix metalloproteinases in synovial fluids from patients with rheumatoid arthritis and osteoarthritis. Biol Chem 391: pp. 571-579
    103. Rannou, F, Francois, M, Corvol, MT, Berenbaum, F (2006) Cartilage breakdown in rheumatoid arthritis. Joint Bone Spine 73: pp. 29-36
    104. Rattenholl, A, Steinhoff, M (2008) Proteinase-activated receptor-2 in the skin: receptor expression, activation and function during health and disease. Drug News Perspect 21: pp. 369-381
    105. Rock, MJ, Prenen, J, Funari, VA, Funari, TL, Merriman, B, Nelson, SF, Lachman, RS, Wilcox, WR, Reyno, S, Quadrelli, R, Vaglio, A, Owsianik, G, Janssens, A, Voets, T, Ikegawa, S, Nagai, T, Rimoin, DL, Nilius, B, Cohn, DH (2008) Gain-of-function mutations in TRPV4 cause autosomal dominant brachyolmia. Nat Genet 40: pp. 999-1003
    106. Ronday, HK, Laan, WH, Tak, PP, Roos, JA, Bank, RA, TeKoppele, JM, Froelich, CJ, Hack, CE, Hogendoorn, PC, Breedveld, FC, Verheijen, JH (2001) Human granzyme B mediates cartilage proteoglycan degradation and is expressed at the invasive front of the synovium in rheumatoid arthritis. Rheumatology (Oxford) 40: pp. 55-61
    107. Rosenthal, AK, Gohr, CM, Mitton-Fitzgerald, E, Lutz, MK, Dubyak, GR, Ryan, LM (2013) The progressive ankylosis gene product ANK regulates extracellular ATP levels in primary articular chondrocytes. Arthritis Res Ther 15: pp. R154
    108. Russell, FA, Schuelert, N, Veldhoen, VE, Hollenberg, MD, McDougall, JJ (2012) Activation of PAR(2) receptors sensitizes primary afferents and causes leukocyte rolling and adherence in the rat knee joint. Br J Pharmacol 167: pp. 1665-1678
    109. Saitta, B, Passarini, J, Sareen, D, Ornelas, L, Sahabian, A, Argade, S, Krakow, D, Cohn, DH, Svendsen, CN, Rimoin, DL (2014) Patient-derived skeletal dysplasia induced pluripotent stem cells display abnormal chondrogenic marker expression and regulation by BMP2 and TGFbeta1. Stem Cells Dev 23: pp. 1464-1478
    110. Salat, K, Moniczewski, A, Librowski, T (2013) Transient receptor potential channels - emerging novel drug targets for the treatment of pain. Curr Med Chem 20: pp. 1409-1436
    111. Sampat, SR, Dermksian, MV, Oungoulian, SR, Winchester, RJ, Bulinski, JC, Ateshian, GA, Hung, CT (2013) Applied osmotic loading for promoting development of engineered cartilage. J Biomech 46: pp. 2674-2681
    112. Schaible, H Joint pain: basic mechanisms. In: McMahon, S, Koltzenburg, M, Tracey, I, Turk, D eds. (2013) Wall and Melzack鈥檚 textbook of pain. Elsevier Churchill Livingstone Publishers, Philadelphia, pp. 609-619
    113. Sipe, WE, Brierley, SM, Martin, CM, Phillis, BD, Cruz, FB, Grady, EF, Liedtke, W, Cohen, DM, Vanner, S, Blackshaw, LA, Bunnett, NW (2008) Transient receptor potential vanilloid 4 mediates protease activated receptor 2-induced sensitization of colonic afferent nerves and visceral hyperalgesia. Am J Physiol Gastrointest Liver Physiol 294: pp. G1288-1298
    114. Sostegni S, Diakov A, McIntyre P, Bunnett N, Korbmacher C, Haerteis S (2014) Sensitisation of TRPV4 by PAR is independent of intracellular calcium signalling and can be mediated by the biased agonist neutrophil elastase. Pflugers Arch Eur J Physiol. doi:10.1007/s00424-014-1539-6
    115. Stanczyk, J, Ospelt, C, Karouzakis, E, Filer, A, Raza, K, Kolling, C, Gay, R, Buckley, CD, Tak, PP, Gay, S, Kyburz, D (2011) Altered expression of microRNA-203 in rheumatoid arthritis synovial fibroblasts and its role in fibroblast activation. Arthritis Rheum 63: pp. 373-381
    116. Steinhoff, M, Corvera, CU, Thoma, MS, Kong, W, McAlpine, BE, Caughey, GH, Ansel, JC, Bunnett, NW (1999) Proteinase-activated receptor-2 in human skin: tissue distribution and activation of keratinocytes by mast cell tryptase. Exp Dermatol 8: pp. 282-294
    117. Steinhoff, M, Vergnolle, N, Young, SH, Tognetto, M, Amadesi, S, Ennes, HS, Trevisani, M, Hollenberg, MD, Wallace, JL, Caughey, GH, Mitchell, SE, Williams, LM, Geppetti, P, Mayer, EA, Bunnett, NW (2000) Agonists of proteinase-activated receptor 2 induce inflammation by a neurogenic mechanism. Nat Med 6: pp. 151-158
    118. Strotmann, R, Harteneck, C, Nunnenmacher, K, Schultz, G, Plant, TD (2000) OTRPC4, a nonselective cation channel that confers sensitivity to extracellular osmolarity. Nat Cell Biol 2: pp. 695-702
    119. Sun, HB, Yokota, H (2002) Reduction of cytokine-induced expression and activity of MMP-1 and MMP-13 by mechanical strain in MH7A rheumatoid synovial cells. Matrix Biol 21: pp. 263-270
    120. Suzuki, T, Notomi, T, Miyajima, D, Mizoguchi, F, Hayata, T, Nakamoto, T, Hanyu, R, Kamolratanakul, P, Mizuno, A, Suzuki, M, Ezura, Y, Izumi, Y, Noda, M (2013) Osteoblastic differentiation enhances expression of TRPV4 that is required for calcium oscillation induced by mechanical force. Bone 54: pp. 172-178
    121. Terada, Y, Fujimura, M, Nishimura, S, Tsubota, M, Sekiguchi, F, Nishikawa, H, Kawabata, A (2013) Contribution of TRPA1 as a downstream signal of proteinase-activated receptor-2 to pancreatic pain. J Pharmacol Sci 123: pp. 284-287
    122. Thorneloe, KS, Cheung, M, Bao, W, Alsaid, H, Lenhard, S, Jian, MY, Costell, M, Maniscalco-Hauk, K, Krawiec, JA, Olzinski, A, Gordon, E, Lozinskaya, I, Elefante, L, Qin, P, Matasic, DS, James, C, Tunstead, J, Donovan, B, Kallal, L, Waszkiewicz, A, Vaidya, K, Davenport, EA, Larkin, J, Burgert, M, Casillas, LN, Marquis, RW, Ye, G, Eidam, HS, Goodman, KB, Toomey, JR, Roethke, TJ, Jucker, BM, Schnackenberg, CG, Townsley, MI, Lepore, JJ, Willette, RN (2012) An orally active TRPV4 channel blocker prevents and resolves pulmonary edema induced by heart failure. Sci Transl Med 4: pp. 159ra-148
    123. Tian, W, Fu, Y, Garcia-Elias, A, Fernandez-Fernandez, JM, Vicente, R, Kramer, PL, Klein, RF, Hitzemann, R, Orwoll, ES, Wilmot, B, McWeeney, S, Valverde, MA, Cohen, DM (2009) A loss-of-function nonsynonymous polymorphism in the osmoregulatory TRPV4 gene is associated with human hyponatremia. Proc Natl Acad Sci U S A 106: pp. 14034-14039
    124. Tindell, AG, Kelso, EB, Ferrell, WR, Lockhart, JC, Walsh, DA, Dunning, L, McInnes, IB (2012) Correlation of protease-activated receptor-2 expression and synovitis in rheumatoid and osteoarthritis. Rheumatol Int 32: pp. 3077-3086
    125. Troeberg, L, Nagase, H (2012) Proteases involved in cartilage matrix degradation in osteoarthritis. Biochim Biophys Acta 1824: pp. 133-145
    126. Turkenburg, JP, Lamers, MB, Brzozowski, AM, Wright, LM, Hubbard, RE, Sturt, SL, Williams, DH (2002) Structure of a Cys25鈥?Ser mutant of human cathepsin S. Acta Crystallogr D Biol Crystallogr 58: pp. 451-455
    127. Eerden, BC, Oei, L, Roschger, P, Fratzl-Zelman, N, Hoenderop, JG, Schoor, NM, Pettersson-Kymmer, U, Schreuders-Koedam, M, Uitterlinden, AG, Hofman, A, Suzuki, M, Klaushofer, K, Ohlsson, C, Lips, PJ, Rivadeneira, F, Bindels, RJ, Leeuwen, JP (2013) TRPV4 deficiency causes sexual dimorphism in bone metabolism and osteoporotic fracture risk. Bone 57: pp. 443-454
    128. Vergnolle, N, Bunnett, NW, Sharkey, KA, Brussee, V, Compton, SJ, Grady, EF, Cirino, G, Gerard, N, Basbaum, AI, Andrade-Gordon, P, Hollenberg, MD, Wallace, JL (2001) Proteinase-activated receptor-2 and hyperalgesia: a novel pain pathway. Nat Med 7: pp. 821-826
    129. Vincent, TL (2013) Targeting mechanotransduction pathways in osteoarthritis: a focus on the pericellular matrix. Curr Opin Pharmacol 13: pp. 449-454
    130. Vincent, F, Duncton, MA (2011) TRPV4 agonists and antagonists. Curr Top Med Chem 11: pp. 2216-2226
    131. Wang, L, Wang, Y, Han, Y, Henderson, SC, Majeska, RJ, Weinbaum, S, Schaffler, MB (2005) In situ measurement of solute transport in the bone lacunar-canalicular system. Proc Natl Acad Sci U S A 102: pp. 11911-11916
    132. Weidauer, E, Yasuda, Y, Biswal, BK, Cherny, M, James, MN, Bromme, D (2007) Effects of disease-modifying anti-rheumatic drugs (DMARDs) on the activities of rheumatoid arthritis-associated cathepsins K and S. Biol Chem 388: pp. 331-336
    133. Weinstein, MM, Tompson, SW, Chen, Y, Lee, B, Cohn, DH (2014) Mice expressing mutant Trpv4 recapitulate the human TRPV4 disorders. J Bone Miner Res.
    134. Willard, VP, Diekman, BO, Sanchez-Adams, J, Christoforou, N, Leong, KW, Guilak, F (2014) Use of cartilage derived from murine induced pluripotent stem cells for osteoarthritis drug screening. Arthritis Rheumatol 66: pp. 3062-3072
    135. Zhao P, Lieu T, Barlow N, Metcalf M, Veldhuis N, Jensen D, Kocan M, Sostegni S, Haerteis S, Baraznenok V, Henderson I, Lindstrom E, Guerrero-Alba R, Valdez-Morales E, Liedtke W, McIntyre P, Vanner SJ, Korbmacher C, Bunnett NW (2014) Cathepsin S causes inflammatory pain via biased agonism of PAR2 and TRPV4. J Biol Chem 289(39):27215鈥?4. doi:10.1074/jbc.M114.599712
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Biomedicine
    Pharmacology and Toxicology
    Neurosciences
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1432-1912
文摘
Biomechanical factors play a critical role in regulating the physiology as well as the pathology of multiple joint tissues and have been implicated in the pathogenesis of osteoarthritis. Therefore, the mechanisms by which cells sense and respond to mechanical signals may provide novel targets for the development of disease-modifying osteoarthritis drugs (DMOADs). Transient receptor potential vanilloid 4 (TRPV4) is a Ca2+-permeable cation channel that serves as a sensor of mechanical or osmotic signals in several musculoskeletal tissues, including cartilage, bone, and synovium. The importance of TRPV4 in joint homeostasis is apparent in patients harboring TRPV4 mutations, which result in the development of a spectrum of skeletal dysplasias and arthropathies. In addition, the genetic knockout of Trpv4 results in the development of osteoarthritis and decreased osteoclast function. In engineered cartilage replacements, chemical activation of TRPV4 can reproduce many of the anabolic effects of mechanical loading to accelerate tissue growth and regeneration. Overall, TRPV4 plays a key role in transducing mechanical, pain, and inflammatory signals within joint tissues and thus is an attractive therapeutic target to modulate the effects of joint diseases. In pathological conditions in the joint, when the delicate balance of TRPV4 activity is altered, a variety of different tools could be utilized to directly or indirectly target TRPV4 activity.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700