用户名: 密码: 验证码:
Some Remarks on the Staircasing Phenomenon in Total Variation-Based Image Denoising
详细信息    查看全文
  • 作者:Khalid Jalalzai
  • 关键词:Total variation ; Image denoising ; Staircasing ; 35J70 ; 65J20 ; 35K65 ; 68U10
  • 刊名:Journal of Mathematical Imaging and Vision
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:54
  • 期:2
  • 页码:256-268
  • 全文大小:1,881 KB
  • 参考文献:1.Allard, W.K.: Total variation regularization for image denoising. II. Examples. SIAM J. Imaging Sci. 1, 400–417 (2008)CrossRef MathSciNet MATH
    2.Allard, W.K.: Total variation regularization for image denoising. III. Examples. SIAM J. Imaging Sci. 2, 532–568 (2009)CrossRef MathSciNet MATH
    3.Alter, F., Caselles, V., Chambolle, A.: A characterization of convex calibrable sets in \({\mathbb{R}}^N\) . Math. Ann. 332, 329–366 (2005)CrossRef MathSciNet MATH
    4.Ambrosio, L., Fusco, N., Pallara, D.: Functions of Bounded Variation and Free Discontinuity Problems. Oxford Mathematical Monographs, The Clarendon Press Oxford University Press, New York (2000)
    5.Andreu-Vaillo, F., Caselles, V., Mazón, J.M.: Parabolic Quasilinear Equations Minimizing Linear Growth Functionals, vol. 223 of Progress in Mathematics. Birkhäuser Verlag, Basel (2004)
    6.Anzellotti, G.: Pairings between measures and bounded functions and compensated compactness. Ann. Math. Pura Appl. 135(4), 293–318 (1983); (1984)
    7.Bonforte, M., Figalli, A.: Total variation flow and sign fast diffusion in one dimension. J. Differ. Equ. 252, 4455–4480 (2012)CrossRef MathSciNet MATH
    8.Bourgain, J., Brezis, H.: On the equation \(\text{ div } Y=f\) and application to control of phases. J. Am. Math. Soc. 16, 393–426 (2003). (electronic)CrossRef MathSciNet MATH
    9.Brezis, H.: Opérateurs Maximaux Monotones et Semi-groupes de Contractions dans les espaces de Hilbert. North-Holland, Amsterdam (1973). North-Holland Mathematics Studies, No. 5. Notas de Matemática (50)
    10.Briani, A., Chambolle, A., Novaga, M., Orlandi, G.: On the gradient flow of a one-homogeneous functional. Conflu. Math. 3, 617–635 (2011)CrossRef MathSciNet MATH
    11.Caffarelli, L.A., de la Llave, R.: Planelike minimizers in periodic media. Comm. Pure Appl. Math. 54, 1403–1441 (2001)CrossRef MathSciNet MATH
    12.Caselles, V., Chambolle, A., Novaga, M.: The discontinuity set of solutions of the TV denoising problem and some extensions. Multiscale Model. Simul. 6, 879–894 (2007)CrossRef MathSciNet MATH
    13.Caselles, V., Chambolle, A., Novaga, M.: Regularity for solutions of the total variation denoising problem. Revista Matemática Iberoamericana 27, 233–252 (2010)MathSciNet
    14.Caselles, V., Jalalzai, K., Novaga, M.: On the jump set of solutions of the total variation flow Rend. Sem. Mat. Padova. 130, 155–168 (2013)
    15.Chambolle, A.: An algorithm for total variation minimization and applications. J. Math. Imaging Vis. 20, 89–97 (2004). Special issue on mathematics and image analysisCrossRef MathSciNet
    16.Chambolle, A., Caselles, V., Cremers, D., Novaga, M., Pock, T.: An introduction to total variation for image analysis. In: Theoretical Foundations and Numerical Methods for Sparse Recovery, vol. 9 of Radon Series on Computational and Applied Mathematics, pp. 263–340. Walter de Gruyter, Berlin (2010)
    17.Chambolle, A., Lions, P.-L.: Image recovery via total variation minimization and related problems. Numer. Math. 76, 167–188 (1997)CrossRef MathSciNet MATH
    18.Chambolle, A., Pock, T.: A first-order primal-dual algorithm for convex problems with applications to imaging. J. Math. Imaging Vis. 40, 120–145 (2011)CrossRef MathSciNet MATH
    19.Chambolle, A., Thouroude, G.: Homogenization of interfacial energies and construction of plane-like minimizers in periodic media through a cell problem. Netw. Heterog. Media 4, 127–152 (2009)CrossRef MathSciNet MATH
    20.De Pauw, T., Pfeffer, W.: Distributions for which \(div\,v = f\) has a continuous solution. Commun. Pure Appl. Math. 61, 230–260 (2008)CrossRef MATH
    21.Giusti, E.: Minimal Surfaces and Functions of Bounded Variation, vol. 80 of Monographs in Mathematics. Birkhäuser Verlag, Basel (1984)
    22.Hörmander, L.: The Analysis of Linear Partial Differential Operators. I. Classics in Mathematics. Springer, Berlin (2003). Distribution Theory and Fourier Analysis, Reprint of the second (1990) edition [Springer, Berlin; MR1065993 (91m:35001a)]
    23.Jalalzai, K.: Discontinuities of the minimizers of the weighted or anisotropic total variation for image reconstruction (2014).arXiv:​1402.​0026
    24.Jalalzai, K.: Regularization of Inverse Problems in Image Processing. PhD Thesis, École Polytechnique, Palaiseau (2012)
    25.Jalalzai, K., Chambolle, A.: Enhancement of blurred and noisy images based on an original variant of the total variation. Scale Space Var. Methods Comput. Vis. 5567, 368–376 (2009)CrossRef
    26.Louchet, C., Moisan, L.: Total variation denoising using posterior expectation. In: 16th European Signal Processing Conference (EUSIPCO 2008), pp. 1–5. IEEE (2008)
    27.Nikolova, M.: Local strong homogeneity of a regularized estimator. SIAM J. Appl. Math. 61, 633–658 (2000). (electronic)CrossRef MathSciNet MATH
    28.Ring, W.: Structural properties of solutions to total variation regularization problems. M2AN Math. Model. Numer. Anal. 34, 799–810 (2000)CrossRef MathSciNet MATH
    29.Rudin, L., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Phys. D: Nonlinear Phenom. 60, 259–268 (1992)CrossRef MathSciNet MATH
    30.Wang, J., Lucier, B.J.: Error bounds for finite-difference methods for Rudin–Osher–Fatemi image smoothing. SIAM J. Numer. Anal. 49, 845–868 (2011)CrossRef MathSciNet MATH
    31.Ziemer, W.P.: Weakly Differentiable Functions, vol. 120 of Graduate Texts in Mathematics. Springer, New York (1989). Sobolev spaces and functions of bounded variation
  • 作者单位:Khalid Jalalzai (1)

    1. CMAP, CNRS, Ecole Polytechnique, 91128 , Palaiseau Cedex, France
  • 刊物类别:Computer Science
  • 刊物主题:Computer Imaging, Vision, Pattern Recognition and Graphics
    Image Processing and Computer Vision
    Artificial Intelligence and Robotics
    Automation and Robotics
  • 出版者:Springer Netherlands
  • ISSN:1573-7683
文摘
This paper deals with the so-called staircasing phenomenon, which frequently arises in total variation-based denoising models in image analysis. We prove in particular that staircasing always occurs at global extrema of the datum and at all extrema of the minimizer. It is also shown that, for radial images, the staircasing always appears at the extrema and at the boundary of the image. We also prove the equivalence between the denoising model and the total variation flow, in the radial case, thus, extending a previous result in dimension one. This equivalence cannot hold in the non-radial case, as it is shown with a counterexample. This connection allows us to understand how the staircase zones and the discontinuities of the denoising problem evolve with the regularization parameter. Keywords Total variation Image denoising Staircasing

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700