用户名: 密码: 验证码:
Oncogenic KRAS promotes malignant brain tumors in zebrafish
详细信息    查看全文
  • 作者:Bensheng Ju (1)
    Wenbiao Chen (2)
    Brent A Orr (3)
    Jan M Spitsbergen (4)
    Sujuan Jia (1)
    Christopher J Eden (5)
    Hannah E Henson (1) (6)
    Michael R Taylor (1) (7)

    1. Department of Chemical Biology & Therapeutics
    ; St. Jude Children鈥檚 Research Hospital ; Memphis ; TN ; 38105 ; USA
    2. Department of Molecular Physiology & Biophysics
    ; Vanderbilt University School of Medicine ; Nashville ; TN ; 37232 ; USA
    3. Department of Pathology
    ; St Jude Children鈥檚 Research Hospital ; Memphis ; TN ; 38105 ; USA
    4. Fish Disease Research Group
    ; Department of Microbiology ; Oregon State University ; Corvallis ; OR ; 97331 ; USA
    5. Department of Developmental Neurobiology
    ; St. Jude Children鈥檚 Research Hospital ; Memphis ; TN ; 38105 ; USA
    6. Integrated Program in Biomedical Sciences
    ; University of Tennessee Health Science Center ; Memphis ; TN ; 38163 ; USA
    7. Current address
    ; Pharmaceutical Sciences Division ; School of Pharmacy ; University of Wisconsin-Madison ; Madison ; WI ; 53705 ; USA
  • 关键词:Zebrafish ; Oncogenic KRAS (KRASG12V) ; krt5 ; gfap ; Brain tumors ; Drug screening
  • 刊名:Molecular Cancer
  • 出版年:2015
  • 出版时间:December 2015
  • 年:2015
  • 卷:14
  • 期:1
  • 全文大小:4,473 KB
  • 参考文献:1. Maher EA, Furnari FB, Bachoo RM, Rowitch DH, Louis DN, Cavenee WK, et al. Malignant glioma: genetics and biology of a grave matter. Genes Dev. 2001;15:1311鈥?3. CrossRef
    2. Monje M, Mitra SS, Freret ME, Raveh TB, Kim J, Masek M, et al. Hedgehog-responsive candidate cell of origin for diffuse intrinsic pontine glioma. Proc Natl Acad Sci U S A. 2011;108:4453鈥?. CrossRef
    3. Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature. 2008;455:1061鈥?8.
    4. Holmen SL, Williams BO. Essential role for Ras signaling in glioblastoma maintenance. Cancer Res. 2005;65:8250鈥?. CrossRef
    5. Abel TW, Clark C, Bierie B, Chytil A, Aakre M, Gorska A, et al. GFAP-Cre-mediated activation of oncogenic K-ras results in expansion of the subventricular zone and infiltrating glioma. Mol Cancer Res. 2009;7:645鈥?3. CrossRef
    6. Holland EC, Celestino J, Dai C, Schaefer L, Sawaya RE, Fuller GN. Combined activation of Ras and Akt in neural progenitors induces glioblastoma formation in mice. Nat Genet. 2000;25:55鈥?. CrossRef
    7. Munoz DM, Tung T, Agnihotri S, Singh S, Guha A, Zadeh G, et al. Loss of p53 cooperates with K-ras activation to induce glioma formation in a region-independent manner. Glia. 2013;61:1862鈥?2.
    8. White R, Rose K, Zon L. Zebrafish cancer: the state of the art and the path forward. Nat Rev Cancer. 2013;13:624鈥?6. CrossRef
    9. Patton EE, Widlund HR, Kutok JL, Kopani KR, Amatruda JF, Murphey RD, et al. BRAF mutations are sufficient to promote nevi formation and cooperate with p53 in the genesis of melanoma. Curr Biol. 2005;15:249鈥?4. CrossRef
    10. Park SW, Davison JM, Rhee J, Hruban RH, Maitra A, Leach SD. Oncogenic KRAS induces progenitor cell expansion and malignant transformation in zebrafish exocrine pancreas. Gastroenterology. 2008;134:2080鈥?0. CrossRef
    11. Langenau DM, Keefe MD, Storer NY, Guyon JR, Kutok JL, Le X, et al. Effects of RAS on the genesis of embryonal rhabdomyosarcoma. Genes Dev. 2007;21:1382鈥?5. CrossRef
    12. Nguyen AT, Emelyanov A, Koh CH, Spitsbergen JM, Lam SH, Mathavan S, et al. A high level of liver-specific expression of oncogenic Kras(V12) drives robust liver tumorigenesis in transgenic zebrafish. Dis Model Mech. 2011;4:801鈥?3. CrossRef
    13. Ju B. Activation of Sonic hedgehog signaling in neural progenitor cells promotes glioma development in the zebrafish optic pathway. Oncogenesis. 2014;3:e96. CrossRef
    14. Bernardos RL, Raymond PA. GFAP transgenic zebrafish. Gene Expr Patterns. 2006;6:1007鈥?3. CrossRef
    15. Krushna Padhi B, Akimenko MA, Ekker M. Independent expansion of the keratin gene family in teleostean fish and mammals: an insight from phylogenetic analysis and radiation hybrid mapping of keratin genes in zebrafish. Gene. 2006;368:37鈥?5. CrossRef
    16. Chua KL, Lim TM. Type I and type II cytokeratin cDNAs from the zebrafish (Danio rerio) and expression patterns during early development. Differentiation. 2000;66:31鈥?1. CrossRef
    17. Lam CS, Marz M, Strahle U. gfap and nestin reporter lines reveal characteristics of neural progenitors in the adult zebrafish brain. Dev Dyn. 2009;238:475鈥?6. CrossRef
    18. Winkler C, Schafer M, Duschl J, Schartl M, Volff JN. Functional divergence of two zebrafish midkine growth factors following fish-specific gene duplication. Genome Res. 2003;13:1067鈥?1. CrossRef
    19. Berghmans S, Murphey RD, Wienholds E, Neuberg D, Kutok JL, Fletcher CD, et al. tp53 mutant zebrafish develop malignant peripheral nerve sheath tumors. Proc Natl Acad Sci U S A. 2005;102:407鈥?2. CrossRef
    20. Uhrbom L, Dai C, Celestino JC, Rosenblum MK, Fuller GN, Holland EC. Ink4a-Arf loss cooperates with KRas activation in astrocytes and neural progenitors to generate glioblastomas of various morphologies depending on activated Akt. Cancer Res. 2002;62:5551鈥?.
    21. Ju B, Spitsbergen J, Eden CJ, Taylor MR, Chen W. Co-activation of hedgehog and AKT pathways promote tumorigenesis in zebrafish. Mol Cancer. 2009;8:40. CrossRef
    22. Kim SH, Speirs CK, Solnica-Krezel L, Ess KC. Zebrafish model of tuberous sclerosis complex reveals cell-autonomous and non-cell-autonomous functions of mutant tuberin. Dis Model Mech. 2011;4:255鈥?7. CrossRef
    23. Hawkins TA, Cavodeassi F, Erdelyi F, Szabo G, Lele Z. The small molecule Mek1/2 inhibitor U0126 disrupts the chordamesoderm to notochord transition in zebrafish. BMC Dev Biol. 2008;8:42. CrossRef
    24. Restrepo A, Smith CA, Agnihotri S, Shekarforoush M, Kongkham PN, Seol HJ, et al. Epigenetic regulation of glial fibrillary acidic protein by DNA methylation in human malignant gliomas. Neuro Oncol. 2011;13:42鈥?0. CrossRef
    25. Friedmann-Morvinski D, Bushong EA, Ke E, Soda Y, Marumoto T, Singer O, et al. Dedifferentiation of neurons and astrocytes by oncogenes can induce gliomas in mice. Science. 2012;338:1080鈥?. CrossRef
    26. Haigis KM, Kendall KR, Wang Y, Cheung A, Haigis MC, Glickman JN, et al. Differential effects of oncogenic K-Ras and N-Ras on proliferation, differentiation and tumor progression in the colon. Nat Genet. 2008;40:600鈥?. CrossRef
    27. Song X, Andrew Allen R, Terence Dunn S, Fung KM, Farmer P, Gandhi S, et al. Glioblastoma with PNET-like components has a higher frequency of isocitrate dehydrogenase 1 (IDH1) mutation and likely a better prognosis than primary glioblastoma. Int J Clin Exp Pathol. 2011;4:651鈥?0.
    28. Cichowski K, Shih TS, Schmitt E, Santiago S, Reilly K, McLaughlin ME, et al. Mouse models of tumor development in neurofibromatosis type 1. Science. 1999;286:2172鈥?. CrossRef
    29. Kohli L, Kaza N, Carroll SL, Roth KA. Protector turns predator: Autophagic death via selective degradation of KRAS. Autophagy. 2013;9:1438鈥?. CrossRef
    30. Amsterdam A, Sadler KC, Lai K, Farrington S, Bronson RT, Lees JA, et al. Many ribosomal protein genes are cancer genes in zebrafish. PLoS Biol. 2004;2:E139. CrossRef
    31. Sanai N, Alvarez-Buylla A, Berger MS. Neural stem cells and the origin of gliomas. N Engl J Med. 2005;353:811鈥?2. CrossRef
    32. Marz M, Chapouton P, Diotel N, Vaillant C, Hesl B, Takamiya M, et al. Heterogeneity in progenitor cell subtypes in the ventricular zone of the zebrafish adult telencephalon. Glia. 2010;58:870鈥?8.
    33. da Lee Y, Gianino SM, Gutmann DH. Innate neural stem cell heterogeneity determines the patterning of glioma formation in children. Cancer Cell. 2012;22:131鈥?. CrossRef
    34. Shaw RJ, Cantley LC. Ras, PI(3)K and mTOR signalling controls tumour cell growth. Nature. 2006;441:424鈥?0. CrossRef
    35. Nguyen AT, Emelyanov A, Koh CH, Spitsbergen JM, Parinov S, Gong Z. An inducible kras(V12) transgenic zebrafish model for liver tumorigenesis and chemical drug screening. Dis Model Mech. 2012;5:63鈥?2. CrossRef
    36. Roux PP, Shahbazian D, Vu H, Holz MK, Cohen MS, Taunton J, et al. RAS/ERK signaling promotes site-specific ribosomal protein S6 phosphorylation via RSK and stimulates cap-dependent translation. J Biol Chem. 2007;282:14056鈥?4. CrossRef
    37. Seok SH, Na YR, Han JH, Kim TH, Jung H, Lee BH, et al. Cre/loxP-regulated transgenic zebrafish model for neural progenitor-specific oncogenic Kras expression. Cancer Sci. 2010;101:149鈥?4. CrossRef
    38. Zon LI, Peterson RT. In vivo drug discovery in the zebrafish. Nat Rev Drug Discov. 2005;4:35鈥?4. CrossRef
    39. White RM, Cech J, Ratanasirintrawoot S, Lin CY, Rahl PB, Burke CJ, et al. DHODH modulates transcriptional elongation in the neural crest and melanoma. Nature. 2011;471:518鈥?2. CrossRef
    40. Ridges S, Heaton WL, Joshi D, Choi H, Eiring A, Batchelor L, et al. Zebrafish screen identifies novel compound with selective toxicity against leukemia. Blood. 2012;119:5621鈥?1. CrossRef
    41. Baines AT, Xu D, Der CJ. Inhibition of Ras for cancer treatment: the search continues. Future Med Chem. 2011;3:1787鈥?08. CrossRef
    42. Stern HM, Murphey RD, Shepard JL, Amatruda JF, Straub CT, Pfaff KL, et al. Small molecules that delay S phase suppress a zebrafish bmyb mutant. Nat Chem Biol. 2005;1:366鈥?0. CrossRef
    43. Jeong JY, Kwon HB, Ahn JC, Kang D, Kwon SH, Park JA, et al. Functional and developmental analysis of the blood鈥揵rain barrier in zebrafish. Brain Res Bull. 2008;75:619鈥?8. CrossRef
    44. Umans RA, Taylor MR. Zebrafish as a model to study drug transporters at the blood鈥揵rain barrier. Clin Pharmacol Ther. 2012;92:567鈥?0. CrossRef
    45. Kwan KM, Fujimoto E, Grabher C, Mangum BD, Hardy ME, Campbell DS, et al. The Tol2kit: a multisite gateway-based construction kit for Tol2 transposon transgenesis constructs. Dev Dyn. 2007;236:3088鈥?9. CrossRef
    46. Urasaki A, Morvan G, Kawakami K. Functional dissection of the Tol2 transposable element identified the minimal cis-sequence and a highly repetitive sequence in the subterminal region essential for transposition. Genetics. 2006;174:639鈥?9. CrossRef
  • 刊物主题:Cancer Research; Oncology;
  • 出版者:BioMed Central
  • ISSN:1476-4598
文摘
Background Zebrafish have been used as a vertebrate model to study human cancers such as melanoma, rhabdomyosarcoma, liver cancer, and leukemia as well as for high-throughput screening of small molecules of therapeutic value. However, they are just emerging as a model for human brain tumors, which are among the most devastating and difficult to treat. In this study, we evaluated zebrafish as a brain tumor model by overexpressing a human version of oncogenic KRAS (KRASG12V). Methods Using zebrafish cytokeratin 5 (krt5) and glial fibrillary acidic protein (gfap) gene promoters, we activated Ras signaling in the zebrafish central nervous system (CNS) through transient and stable transgenic overexpression. Immunohistochemical analyses were performed to identify activated pathways in the resulting brain tumors. The effects of the MEK inhibitor U0126 on oncogenic KRAS were evaluated. Results We demonstrated that transient transgenic expression of KRASG12V in putative neural stem and/or progenitor cells induced brain tumorigenesis. When expressed under the control of the krt5 gene promoter, KRASG12V induced brain tumors in ventricular zones (VZ) at low frequency. The majority of other tumors were composed mostly of spindle and epithelioid cells, reminiscent of malignant peripheral nerve sheath tumors (MPNSTs). In contrast, when expressed under the control of the gfap gene promoter, KRASG12V induced brain tumors in both VZs and brain parenchyma at higher frequency. Immunohistochemical analyses indicated prominent activation of the canonical RAS-RAF-ERK pathway, variable activation of the mTOR pathway, but no activation of the PI3K-AKT pathway. In a krt5-derived stable and inducible transgenic line, expression of oncogenic KRAS resulted in skin hyperplasia, and the MEK inhibitor U0126 effectively suppressed this pro-proliferative effects. In a gfap-derived stable and inducible line, expression of oncogenic KRAS led to significantly increased mitotic index in the spinal cord. Conclusions Our studies demonstrate that zebrafish could be explored to study cellular origins and molecular mechanisms of brain tumorigenesis and could also be used as a platform for studying human oncogene function and for discovering oncogenic RAS inhibitors.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700