用户名: 密码: 验证码:
All well-posed problems have uniformly stable and convergent discretizations
详细信息    查看全文
  • 作者:Robert Schaback
  • 关键词:65M12 ; 65M70 ; 65N12 ; 65N35 ; 65M15 ; 65M22 ; 65J10 ; 65J20 ; 35D30 ; 35D35 ; 35B65 ; 41A25 ; 41A63
  • 刊名:Numerische Mathematik
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:132
  • 期:3
  • 页码:597-630
  • 全文大小:704 KB
  • 参考文献:1.Abdelaziz, Y., Hamouine, A.: A survey of the extended finite element. Comput. Struct. 86, 1141–1151 (2008)CrossRef
    2.Ahlberg, J.H., Nilson, E.N., Walsh, J.L.: The Theory of Splines and Their Applications, Mathematics in Science and Engineering, vol. 38. Academic Press, New York (1967)
    3.Armentano, M.G.: Error estimates in Sobolev spaces for moving least square approximations. SIAM J. Numer. Anal. 39(1), 38–51 (2001)CrossRef MathSciNet MATH
    4.Armentano, M.G., Durán, R.G.: Error estimates for moving least square approximations. Appl. Numer. Math. 37, 397–416 (2001)CrossRef MathSciNet MATH
    5.Atluri, S.N.: The Meshless Method (MLPG) for Domain and BIE Discretizations. Tech Science Press, Encino, CA (2005)
    6.Atluri, S.N., Zhu, T.-L.: A new meshless local Petrov–Galerkin (MLPG) approach in computational mechanics. Comput. Mech. 22, 117–127 (1998)CrossRef MathSciNet MATH
    7.Babuška, I., Banerjee, U., Osborn, J.E.: Survey of meshless and generalized finite element methods: a unified approach. Acta Numer. 12, 1–125 (2003)CrossRef MathSciNet MATH
    8.Belytschko, T., Gracie, R., Ventura, G.: A Review of Extended/Generalized Finite Element Methods for Material Modeling. Modelling and Simulation in Materials Science and Engineering, vol. 17 (2009)
    9.Belytschko, T., Guo, Y., Liu, W.K., Xiao, S.P.: A unified stability analysis of meshless particle methods. Int. J. Numer. Methods Eng. 48, 1359–1400 (2000)CrossRef MathSciNet MATH
    10.Belytschko, T., Krongauz, Y., Organ, D.J., Fleming, M., Krysl, P.: Meshless methods: an overview and recent developments. Comput. Methods Appl. Mech. Eng. Spec. Issue 139, 3–47 (1996)CrossRef MATH
    11.Böhmer, K., Schaback, R.: A nonlinear discretization theory. J. Comput. Appl. Math. 254, 204–219 (2013)CrossRef MathSciNet MATH
    12.Braess, D.: Finite Elements. Theory, Fast Solvers and Applications in Solid Mechanics, 2nd edn. Cambridge University Press, Cambridge (2001)
    13.Canuto, C., Hussaini, M.Y., Quarteroni, A., Zang, T.A.: Spectral Methods. Scientific Computation. Springer, Berlin (2007)
    14.Cheng, A.H.-D., Golberg, M.A., Kansa, E.J., Zammito, G.: Exponential convergence and h-c multiquadric collocation method for partial differential equations. Numer. Methods Partial Differ. Equ. 19, 571–594 (2003)CrossRef MathSciNet MATH
    15.Cohen, A., Davenport, M.A., Leviatan, D.: On the stability and accuracy of least squares approximations. Found. Comput. Math. 13(5), 819–834 (2013)CrossRef MathSciNet MATH
    16.Davydov, O., Schaback, R.: Error bounds for kernel-based numerical differentiation (2013, in revision)
    17.de Boor, C., Swartz, B.: Collocation at Gaussian points. SIAM J. Numer. Anal. 10, 582–606 (1973)CrossRef MathSciNet MATH
    18.De Marchi, St., Schaback, R.: Stability of kernel-based interpolation. Adv. Comput. Math. 32, 155–161 (2010)
    19.Fornberg, B.: A Practical Guide to Pseudospectral Methods. Cambridge Monographs on Applied and Computational Mathematics, vol. 1. Cambridge University Press, Cambridge (1996)
    20.Fornberg, B., Sloan, D.M.: A review of pseudospectral methods for solving partial differential equations. Acta Numer. 3, 203–267 (1994)
    21.Griebel, M., Schweitzer, M.A. (eds.) Meshfree Methods for Partial Differential Equations I–V, Lecture Notes in Computational Science and Engineering, vols. 26, 43, 57, 65, 79. Springer, Berlin (2002–2011)
    22.Han, W.M., Meng, X.P.: Error analysis of the reproducing kernel particle method. Comput. Methods Appl. Mech. Eng. 190, 6157–6181 (2001)CrossRef MathSciNet MATH
    23.Hon, Y.C., Schaback, R.: On unsymmetric collocation by radial basis functions. Appl. Math. Comput. 119, 177–186 (2001)CrossRef MathSciNet MATH
    24.Hon, Y.C., Schaback, R., Zhou, X.: An adaptive greedy algorithm for solving large RBF collocation problems. Numer. Algorithms 32(1), 13–25 (2003)CrossRef MathSciNet MATH
    25.Hu, W., Hu, H.Y., Chen, J.S.: Error analysis of collocation method based on reproducing kernel approximation. Numer. Methods Partial Differ. Equ. 27, 554–580 (2011). doi:10.​1002/​num.​20539
    26.Jetter, K., Stöckler, J., Ward, J.D.: Error estimates for scattered data interpolation on spheres. Math. Comput. 68, 733–747 (1999)CrossRef MATH
    27.Jost, J.: Partial Differential Equations. Graduate Texts in Mathematics, vol. 214. Springer, New York (2002)
    28.Kansa, E.J.: Application of Hardy’s multiquadric interpolation to hydrodynamics. In: Proc. 1986 Simul. Conf., vol. 4, pp. 111–117 (1986)
    29.Levin, D.: The approximation power of moving least-squares. Math. Comput. 67, 1517–1531 (1998)CrossRef MATH
    30.Li, H., Mulay, S.S.: Meshless Methods and Their Numerical Properties. CRC Press, Boca Raton (2013)CrossRef MATH
    31.Li, S.F., Liu, W.K.: Meshfree Particle Methods. Springer, Berlin (2004)MATH
    32.Li, Z.-C., Lu, T.-T., Hu, H.-Y., Cheng, A.H.-D.: Trefftz and Collocation Methods. WIT Press, Southampton (2008)MATH
    33.Ling, L., Schaback, R.: On adaptive unsymmetric meshless collocation. In: Atluri, S.N., Tadeu, A.J.B. (eds.) Proceedings of the 2004 International Conference on Computational and Experimental Engineering and Sciences, Advances in Computational and Experimental Engineering and Sciences. Tech Science Press, paper # 270 (2004)
    34.Liu, G.R.: Meshfree Methods, 2nd edn. CRC Press, Boca Raton (2010)
    35.Melenk, J.M.: On approximation in meshless methods. In: Frontiers of Numerical Analysis, Universitext, pp. 65–141. Springer, Berlin (2005)
    36.Mirzaei, D.: Private communication (2014)
    37.Mirzaei, D., Schaback, R.: Direct Meshless Local Petrov–Galerkin (DMLPG) method: a generalized MLS approximation. Appl. Numer. Math. 68, 73–82 (2013)CrossRef MathSciNet MATH
    38.Nguyen, V.P., Rabczuk, T., Bordas, S., Duflot, M.: Meshless methods: a review and computer implementation aspects. Math. Comput. Simul. 79, 763–813 (2008)CrossRef MathSciNet MATH
    39.Rieger, C., Zwicknagl, B., Schaback, R.: Sampling and stability. In: Dæhlen, M., Floater, M.S., Lyche, T., Merrien, J.-L., Mørken, K., Schumaker, L.L. (eds.) Mathematical Methods for Curves and Surfaces, Lecture Notes in Computer Science, vol. 5862, pp. 347–369 (2010)
    40.Šarler, B.: From global to local radial basis function collocation method for transport phenomena. In: Advances in Meshfree Techniques, Comput. Methods Appl. Sci., vol. 5, pp. 257–282. Springer, Dordrecht (2007)
    41.Schaback, R.: Improved error bounds for scattered data interpolation by radial basis functions. Math. Comput. 68, 201–216 (1999)CrossRef MathSciNet MATH
    42.Schaback, R.: Convergence of unsymmetric kernel-based meshless collocation methods. SIAM J. Numer. Anal. 45(1), 333–351 (2007, electronic)
    43.Schaback, R.: Unsymmetric meshless methods for operator equations. Numer. Math. 114, 629–651 (2010)CrossRef MathSciNet MATH
    44.Schaback, R.: A computational tool for comparing all linear PDE solvers. Adv. Comput. Math. 41, 333–355 (2015)CrossRef MathSciNet
    45.Schaback, R.: Direct discretizations with applications to meshless methods for PDEs. Dolomites Research Notes on Approximation, Proceedings of DWCAA12, vol. 6, pp. 37–51 (2013)
    46.Schaback, R.: Greedy sparse linear approximations of functionals from nodal data. Numer. Algorithms 67, 531–547 (2014)CrossRef MathSciNet MATH
    47.Schaback, R., Wendland, H.: Adaptive greedy techniques for approximate solution of large RBF systems. Numer. Algorithms 24(3), 239–254 (2000)CrossRef MathSciNet MATH
    48.Schweitzer, M.A.: Meshfree and Generalized Finite Element Methods. Institute for Numerical Simulation, University of Bonn, Habilitation (2008)
    49.Shen, Q.: Local RBF-based differential quadrature collocation method for the boundary layer problems. Eng. Anal. Bound. Elem. 34(3), 213–228 (2010)CrossRef MathSciNet MATH
    50.Shu, C., Ding, H., Yeo, K.S.: Computation of incompressible Navier–Stokes equations by local RBF-based differential quadrature method. CMES Comput. Model. Eng. Sci. 7(2), 195–205 (2005)MathSciNet MATH
    51.Sladek, J., Sladek, V.: Advances in Meshless Methods. Tech Science Press (2006)
    52.Stevens, D., Power, H., Lees, M., Morvan, H.: The use of PDE centres in the local RBF Hermitian method for 3D convective-diffusion problems. J. Comput. Phys. 228(12), 4606–4624 (2009)CrossRef MathSciNet MATH
    53.Swartz, B.: Conditioning collocation. SIAM J. Numer. Anal. 25(1), 124–147 (1988)CrossRef MathSciNet MATH
    54.Swartz, B., Wendroff, B.: The relation between the Galerkin and collocation methods using smooth splines. SIAM J. Numer. Anal. 11, 994–996 (1974)CrossRef MathSciNet MATH
    55.Wendland, H.: Local polynomial reproduction and moving least squares approximation. IMA J. Numer. Anal. 21, 285–300 (2001)CrossRef MathSciNet MATH
    56.Wendland, H.: Scattered Data Approximation. Cambridge University Press, Cambridge (2005)MATH
    57.Yao, G.M., ul Islam, S., Šarler, B.: Assessment of global and local meshless methods based on collocation with radial basis functions for parabolic partial differential equations in three dimensions. Eng. Anal. Bound. Elem. 36(11), 1640–1648 (2012)CrossRef MathSciNet
  • 作者单位:Robert Schaback (1)

    1. Institut für Numerische und Angewandte Mathematik, Universität Göttingen, Lotzestraße 16-18, 37083, Göttingen, Germany
  • 刊物类别:Mathematics and Statistics
  • 刊物主题:Mathematics
    Numerical Analysis
    Mathematics
    Mathematical and Computational Physics
    Mathematical Methods in Physics
    Numerical and Computational Methods
    Applied Mathematics and Computational Methods of Engineering
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:0945-3245
文摘
This paper considers a large class of linear operator equations, including linear boundary value problems for partial differential equations, and treats them as linear recovery problems for functions from their data. Well-posedness of the problem means that this recovery is continuous. Discretization recovers restricted trial functions from restricted test data, and it is well-posed or stable, if this restricted recovery is continuous. After defining a general framework for these notions, this paper proves that all well-posed linear problems have stable and refinable computational discretizations with a stability that is determined by the well-posedness of the problem and independent of the computational discretization, provided that sufficiently many test data are used. The solutions of discretized problems converge when enlarging the trial spaces, and the convergence rate is determined by how well the data of the function solving the analytic problem can be approximated by the data of the trial functions. This allows new and very simple proofs of convergence rates for generalized finite elements, symmetric and unsymmetric Kansa-type collocation, and other meshfree methods like Meshless Local Petrov–Galerkin techniques. It is also shown that for a fixed trial space, weak formulations have a slightly better convergence rate than strong formulations, but at the expense of numerical integration. Since convergence rates are reduced to those coming from Approximation Theory, and since trial spaces are arbitrary, this also covers various spectral and pseudospectral methods. All of this is illustrated by examples. Mathematics Subject Classification 65M12 65M70 65N12 65N35 65M15 65M22 65J10 65J20 35D30 35D35 35B65 41A25 41A63

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700