用户名: 密码: 验证码:
Generalized row-action methods for tomographic imaging
详细信息    查看全文
  • 作者:Martin S. Andersen (1)
    Per Christian Hansen (1)
  • 关键词:Incremental methods ; Proximal methods ; Inverse problems ; Regularization ; Tomographic imaging ; 65R32 ; 90C52 ; 65K05
  • 刊名:Numerical Algorithms
  • 出版年:2014
  • 出版时间:September 2014
  • 年:2014
  • 卷:67
  • 期:1
  • 页码:121-144
  • 全文大小:1,114 KB
  • 参考文献:1. Albert, A.: Regression and the Moore-Penrose Pseudo Inverse. Academic, New York (1972)
    2. Beck, A., Teboulle, M.: A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. Imaging Sci. 2(1), 183鈥?02 (2009) CrossRef
    3. Becker, S., Bobin, J., Cand猫s, E.: NESTA: a fast and accurate first-order method for sparse recovery. SIAM J. Imaging Sci. 4(1), 1鈥?9 (2011) CrossRef
    4. Bertero, M., Boccacci, P.: Introduction to Inverse Problems in Imaging. Institute of Physics Publishing, Bristol (1998) CrossRef
    5. Bertsekas, D.P.: A new class of incremental gradient methods for least squares problems. SIAM J. Optim. 7(4), 913鈥?26 (1997) CrossRef
    6. Bertsekas, D.P.: Nonlinear Programming, 2nd edn. Athena Scientific, Nashua (1999)
    7. Bertsekas, D.P.: Incremental gradient, subgradient, and proximal methods for convex optimization: A survey. In: Sra, S., Nowozin, S., Wright, S.J. (eds.) Optimization for Machine Learning, pp. 85鈥?19. MIT Press, Cambridge, MA (2011)MIT Press, Cambridge, MA (2011)
    8. Bertsekas, D.P.: Incremental proximal methods for large scale convex optimization. Math. Program. 129, 163鈥?95 (2011) CrossRef
    9. Blatt, D., Hero, A., Gauchman, H.: A convergent incremental gradient method with a constant step size. SIAM J. Optim. 18(1), 29鈥?1 (2007) CrossRef
    10. Censor, Y., Davidi, R., Herman, G.T.: Perturbation resilience and superiorization of iterative algorithms. Inverse Probl. 26(6), 065,008 (2010)
    11. Censor, Y., Eggermont, P., Gordon, D.: Strong underrelaxation in Kaczmarz鈥檚 method for inconsistent systems. Numer. Math. 41(1), 83鈥?2 (1983) CrossRef
    12. Chambolle, A., De Vore, R.A., Lee, N.Y., Lucier, B.J.: Nonlinear wavelet image processing: variational problems, compression, and noise removal through wavelet shrinkage. IEEE Trans. Image Process. 7(3), 319鈥?35 (1998)
    13. Chambolle, A., Pock, T.: A first-order primal-dual algorithms for convex problems with applications to imaging. J. Math. Imaging Vis. 40, 120鈥?45 (2011) CrossRef
    14. Combettes, P.L., Pesquet, J.C.: Proximal splitting methods in signal processing. In: Bauschke, H., Burachik, R., Combettes, P., Elser, V., Luke, D. (eds.) Fixed-Point Algorithms for Inverse Problems in Science and Engineering, pp. 185鈥?12. Springer, New York, NY (2011)
    15. Daubechies, I., Defrise, M., De Mol, C.: An iterative thresholding algorithm for linear inverse problems with a sparsity constraint. Commun. Pure Appl. Math. 57(11), 1413鈥?457 (2004) CrossRef
    16. Davidi, R., Herman, G.T., Censor, Y.: Perturbation-resilient block-iterative projection methods with application to image reconstruction from projections. Int. Trans. Oper. Res. 16(4), 505鈥?24 (2009) CrossRef
    17. Dielman, T.E.: Least absolute value regression: Recent contributions. J. Stat. Comput. Simul. 75(4), 263鈥?86 (2005) CrossRef
    18. Elfving, T.: Block-iterative methods for consistent and inconsistent linear equations. Numer. Math. 35, 1鈥?2 (1980)
    19. Elfving, T., Hansen, P.C., Nikazad, T.: Semiconvergence and relaxation parameters for projected sirt algorithms. SIAM J. Sci. Comput. 34(4), A2000鈥揂2017 (2012) CrossRef
    20. Elfving, T., Hansen, P.C., Nikazad, T.: Semi-convergence properties of Kaczmarz鈥檚 method. Submitted to Inverse Problems (2013)
    21. Elfving, T., Nikazad, T., Popa, C.: A class of iterative methods: Semi-convergence, stopping rules, inconsistency, and constraining. In: Censor, Y., Jiang, M., Wang, G. (eds.) Biomedical Mathematics: Promising Directions in Imaging, Therapy Planning, and Inverse Problems. Medical Physics Publishing, Madison (2010)
    22. Friedlander, M., Schmidt, M.: Hybrid deterministic-stochastic methods for data fitting. SIAM J. Sci. Comput. 34(3), A1380鈥揂1405 (2012)
    23. Gordon, R., Bender, R., Herman, G.T.: Algebraic reconstruction techniques (ART) for threedimensional electron microscopy and X-ray photography. J. Theor. Biol. 29(3), 471鈥?81 (1970) CrossRef
    24. Hansen, P.C., Saxild-Hansen, M.: AIR Tools鈥攁 MATLAB package of algebraic iterative reconstruction methods. J. Comput. Appl. Math. 236(8), 2167鈥?178 (2012) CrossRef
    25. Herman, G.T.: Fundamentals of Computerized Tomography: Image Reconstruction from Projections, 2nd edn. Springer, New York (2009)
    26. Herman, G.T., Meyer, L.B.: Algebraic reconstruction techniques can be made computationally efficient. IEEE Trans. Med. Imaging 12, 600鈥?09 (1993)
    27. Jiang, M., Wang, G.: Convergence studies on iterative algorithms for image reconstruction. IEEE Trans. Med. Imaging 22(5), 569鈥?79 (2003) CrossRef
    28. Kaczmarz, S.: Angen盲herte aufl枚sung von systemen linearer gleichungen. Bulletin International de l鈥橝cad茅mie Polonaise des Sciences et des Lettres 35, 355鈥?57 (1937)
    29. Martinet, B.: R茅gularisation d鈥檌n茅quations variationnelles par approximations successives. Revue Franc赂aise d鈥橧nformatique et de Recherche Op鈥檈rationnelle 4(3), 154鈥?58 (1970)
    30. Martinet, B.: Algorithmes pour la resolution de problems d鈥檕ptimisation et de minimax. Ph.D. thesis (1972)
    31. Moreau, J.J.: Proximit茅 et dualit茅 dans un espace hilbertien. Bull. Math. Soc. France 93, 273鈥?99 (1965)
    32. Mueller, J., Siltanen, S.: Linear and Nonlinear Inverse Problems with Practical Applications. SIAM, Philadelphia, PA (2012) CrossRef
    33. Natterer, F.: The Mathematics of Computerized Tomography. SIAM, Philadelphia (2001) CrossRef
    34. Nesterov, Y.: Introductory Lectures on Convex Optimization. Kluwer Academic Publishers, Dordrecht (2004) CrossRef
    35. Recht, B., Re, C.: Toward a noncommutative arithmetic-geometric mean inequality: conjectures, casestudies, and consequences. In: Proceedings of the 25th Annual Conference on Learning Theory (2012)
    36. Rockafellar, R.T.: Convex Analysis, 2nd edn. Princeton University Press, Princeton (1970)
    37. Rockafellar, R.T.: Monotone operators and the proximal point algorithm. SIAM J. Control Optim. 14(5), 877鈥?98 (1976)
    38. Rudin, L., Osher, S.J., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Phys. D 60, 259鈥?68 (1992)
    39. Sidky, E.Y., Pan, X.: Image reconstruction in circular cone-beam computed tomography by constrained, total-variation minimization. Phys. Med. Biol. 53(17), 4777 (2008)
  • 作者单位:Martin S. Andersen (1)
    Per Christian Hansen (1)

    1. Department of Applied Mathematics and Computer Science, Technical University of Denmark, Lyngby, Denmark
  • ISSN:1572-9265
文摘
Row-action methods play an important role in tomographic image reconstruction. Many such methods can be viewed as incremental gradient methods for minimizing a sum of a large number of convex functions, and despite their relatively poor global rate of convergence, these methods often exhibit fast initial convergence which is desirable in applications where a low-accuracy solution is acceptable. In this paper, we propose relaxed variants of a class of incremental proximal gradient methods, and these variants generalize many existing row-action methods for tomographic imaging. Moreover, they allow us to derive new incremental algorithms for tomographic imaging that incorporate different types of prior information via regularization. We demonstrate the efficacy of the approach with some numerical examples.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700