用户名: 密码: 验证码:
Strategies for cloning and manipulating natural and synthetic chromosomes
详细信息    查看全文
  • 作者:Bogumil J. Karas (1)
    Yo Suzuki (1)
    Philip D. Weyman (1)

    1. Synthetic Biology and Bioenergy Group
    ; J. Craig Venter Institute ; 4120 Capricorn Lane ; La Jolla ; CA ; 92037 ; USA
  • 关键词:Saccharomyces cerevisiae ; Escherichia coli ; Bacillus subtilis ; Whole ; genome cloning ; Genome transplantation ; Synthetic genomics
  • 刊名:Chromosome Research
  • 出版年:2015
  • 出版时间:February 2015
  • 年:2015
  • 卷:23
  • 期:1
  • 页码:57-68
  • 全文大小:595 KB
  • 参考文献:1. Annaluru, N, Muller, H, Mitchell, LA (2014) Total synthesis of a functional designer eukaryotic chromosome. Science 344: pp. 55-58 CrossRef
    2. Barnett, MJ, Fisher, RF, Jones, T (2001) Nucleotide sequence and predicted functions of the entire Sinorhizobium meliloti pSymA megaplasmid. Proc Natl Acad Sci U S A 98: pp. 9883-9888 CrossRef
    3. Benders, GA, Noskov, VN, Denisova, EA (2010) Cloning whole bacterial genomes in yeast. Nucleic Acids Res 38: pp. 2558-2569 CrossRef
    4. Boeke, JD, Lacroute, F, Fink, GR (1984) A positive selection for mutants lacking orotidine-5鈥?phosphate decarboxylase activity in yeast: 5-fluoro-orotic acid resistance. Mol Gen Genet 197: pp. 345-346 CrossRef
    5. Chan, KM, Liu, YT, Ma, CH, Jayaram, M, Sau, S (2013) The 2 micron plasmid of Saccharomyces cerevisiae: a miniaturized selfish genome with optimized functional competence. Plasmid 70: pp. 2-17 CrossRef
    6. Cong, L, Ran, FA, Cox, D (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339: pp. 819-823 CrossRef
    7. Datsenko, KA, Wanner, BL (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A 97: pp. 6640-6645 CrossRef
    8. Dicarlo, JE, Conley, AJ, Penttila, M (2013) Yeast oligo-mediated genome engineering (YOGE). ACS Synth Biol 2: pp. 741-749 CrossRef
    9. Dymond, JS, Richardson, SM, Coombes, CE (2011) Synthetic chromosome arms function in yeast and generate phenotypic diversity by design. Nature 477: pp. 471-476 CrossRef
    10. Esvelt, KM, Wang, HH (2013) Genome-scale engineering for systems and synthetic biology. Mol Syst Biol 9: pp. 641 CrossRef
    11. Gibson, DG (2014) Programming biological operating systems: genome design, assembly and activation. Nat Methods 11: pp. 521-526 CrossRef
    12. Gibson, DG, Benders, GA, Andrews-Pfannkoch, C (2008) Complete chemical synthesis, assembly, and cloning of a Mycoplasma genitalium genome. Science 319: pp. 1215-1220 CrossRef
    13. Gibson, DG, Benders, GA, Axelrod, KC (2008) One-step assembly in yeast of 25 overlapping DNA fragments to form a complete synthetic Mycoplasma genitalium genome. Proc Natl Acad Sci U S A 105: pp. 20404-20409 CrossRef
    14. Gibson, DG, Glass, JI, Lartigue, C (2010) Creation of a bacterial cell controlled by a chemically synthesized genome. Science 329: pp. 52-56 CrossRef
    15. Gibson, DG, Smith, HO, Hutchison, CA, Venter, JC, Merryman, C (2010) Chemical synthesis of the mouse mitochondrial genome. Nat Methods 7: pp. 901-903 CrossRef
    16. Gietz, RD (2014) Yeast transformation by the LiAc/SS carrier DNA/PEG method. Methods Mol Biol 1163: pp. 33-44 CrossRef
    17. Gyuris, J, Duda, EG (1986) High-efficiency transformation of Saccharomyces cerevisiae cells by bacterial minicell protoplast fusion. Mol Cell Biol 6: pp. 3295-3297
    18. Hinnen, A, Hicks, JB, Fink, GR (1978) Transformation of yeast. Proc Natl Acad Sci U S A 75: pp. 1929-1933 CrossRef
    19. Holt RA, Warren R, Flibotte S et al (2007) Rebuilding microbial genomes. Bioessays 29:580鈥?90
    20. Hsu, PD, Lander, ES, Zhang, F (2014) Development and applications of CRISPR-Cas9 for genome engineering. Cell 157: pp. 1262-1278 CrossRef
    21. Isaacs, FJ, Carr, PA, Wang, HH (2011) Precise manipulation of chromosomes in vivo enables genome-wide codon replacement. Science 333: pp. 348-353 CrossRef
    22. Itaya, M, Nagata, T, Shiroishi, T, Fujita, K, Tsuge, K (2000) Efficient cloning and engineering of giant DNAs in a novel Bacillus subtilis genome vector. J Biochem 128: pp. 869-875 CrossRef
    23. Itaya, M, Fujita, K, Ikeuchi, M, Koizumi, M, Tsuge, K (2003) Stable positional cloning of long continuous DNA in the Bacillus subtilis genome vector. J Biochem 134: pp. 513-519 CrossRef
    24. Itaya, M, Tsuge, K, Koizumi, M, Fujita, K (2005) Combining two genomes in one cell: stable cloning of the Synechocystis PCC6803 genome in the Bacillus subtilis 168 genome. Proc Natl Acad Sci U S A 102: pp. 15971-15976 CrossRef
    25. Itaya, M, Fujita, K, Kuroki, A, Tsuge, K (2008) Bottom-up genome assembly using the Bacillus subtilis genome vector. Nat Methods 5: pp. 41-43 CrossRef
    26. Johnston, C, Martin, B, Fichant, G, Polard, P, Claverys, JP (2014) Bacterial transformation: distribution, shared mechanisms and divergent control. Nat Rev Microbiol 12: pp. 181-196 CrossRef
    27. Kaneko, S, Itaya, M (2010) Designed horizontal transfer of stable giant DNA released from Escherichia coli. J Biochem 147: pp. 819-822 CrossRef
    28. Karas, BJ, Tagwerker, C, Yonemoto, IT, Hutchison, CA, Smith, HO (2012) Cloning the Acholeplasma laidlawii PG-8A genome in Saccharomyces cerevisiae as a yeast centromeric plasmid. ACS Synth Biol 1: pp. 22-28 CrossRef
    29. Karas, BJ, Jablanovic, J, Sun, L (2013) Direct transfer of whole genomes from bacteria to yeast. Nat Methods 10: pp. 410-412 CrossRef
    30. Karas, BJ, Molparia, B, Jablanovic, J (2013) Assembly of eukaryotic algal chromosomes in yeast. J Biol Eng 7: pp. 30 CrossRef
    31. Karas, BJ, Jablanovic, J, Irvine, E (2014) Transferring whole genomes from bacteria to yeast spheroplasts using entire bacterial cells to reduce DNA shearing. Nat Protoc 9: pp. 743-750 CrossRef
    32. Karas, BJ, Wise, KS, Sun, L (2014) Rescue of mutant fitness defects using in vitro reconstituted designer transposons in Mycoplasma mycoides. Front Microbiol 5: pp. 369 CrossRef
    33. Kim, H, Kim, JS (2014) A guide to genome engineering with programmable nucleases. Nat Rev Genet 15: pp. 321-334 CrossRef
    34. Kouprina, N, Larionov, V (2006) TAR cloning: insights into gene function, long-range haplotypes and genome structure and evolution. Nat Rev Genet 7: pp. 805-812 CrossRef
    35. Kouprina, N, Larionov, V (2008) Selective isolation of genomic loci from complex genomes by transformation-associated recombination cloning in the yeast Saccharomyces cerevisiae. Nat Protoc 3: pp. 371-377 CrossRef
    36. Krishnakumar, R, Grose, C, Haft, DH (2014) Simultaneous non-contiguous deletions using large synthetic DNA and site-specific recombinases. Nucleic Acids Res 42: pp. e111 CrossRef
    37. Lajoie, MJ, Gregg, CJ, Mosberg, JA, Washington, GC, Church, GM (2012) Manipulating replisome dynamics to enhance lambda Red-mediated multiplex genome engineering. Nucleic Acids Res 40: pp. e170 CrossRef
    38. Lartigue, C, Glass, JI, Alperovich, N (2007) Genome transplantation in bacteria: changing one species to another. Science 317: pp. 632-638 CrossRef
    39. Lartigue, C, Vashee, S, Algire, MA (2009) Creating bacterial strains from genomes that have been cloned and engineered in yeast. Science 325: pp. 1693-1696 CrossRef
    40. Lee, BR, Cho, S, Song, Y, Kim, SC, Cho, BK (2013) Emerging tools for synthetic genome design. Mol Cells 35: pp. 359-370 CrossRef
    41. Mosberg, JA, Gregg, CJ, Lajoie, MJ, Wang, HH, Church, GM (2012) Improving lambda red genome engineering in Escherichia coli via rational removal of endogenous nucleases. PLoS One 7: pp. e44638 CrossRef
    42. Newlon, CS, Theis, JF (1993) The structure and function of yeast ARS elements. Curr Opin Genet Dev 3: pp. 752-758 CrossRef
    43. Nishizaki, T, Tsuge, K, Itaya, M, Doi, N, Yanagawa, H (2007) Metabolic engineering of carotenoid biosynthesis in Escherichia coli by ordered gene assembly in Bacillus subtilis. Appl Environ Microbiol 73: pp. 1355-1361 CrossRef
    44. Noskov, VN, Segall-Shapiro, TH, Chuang, RY (2010) Tandem repeat coupled with endonuclease cleavage (TREC): a seamless modification tool for genome engineering in yeast. Nucleic Acids Res 38: pp. 2570-2576 CrossRef
    45. Noskov, VN, Karas, BJ, Young, L (2012) Assembly of large, high G鈥?鈥塁 bacterial DNA fragments in yeast. ACS Synth Biol 1: pp. 267-273 CrossRef
    46. O鈥橬eill, BM, Mikkelson, KL, Gutierrez, NM (2012) An exogenous chloroplast genome for complex sequence manipulation in algae. Nucleic Acids Res 40: pp. 2782-2792 CrossRef
    47. Pinel, D, D鈥橝oust, F, Cardayre, SB (2011) Saccharomyces cerevisiae genome shuffling through recursive population mating leads to improved tolerance to spent sulfite liquor. Appl Environ Microbiol 77: pp. 4736-4743 CrossRef
    48. Ran, FA, Hsu, PD, Lin, CY (2013) Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell 154: pp. 1380-1389 CrossRef
    49. Sanjana, NE, Cong, L, Zhou, Y (2012) A transcription activator-like effector toolbox for genome engineering. Nat Protoc 7: pp. 171-192 CrossRef
    50. Sorek R, Zhu Y, Creevey CJ et al (2007) Genome-wide experimental determination of barriers to horizontal gene transfer. Science 318:1449鈥?452
    51. Storici, F, Lewis, LK, Resnick, MA (2001) In vivo site-directed mutagenesis using oligonucleotides. Nat Biotechnol 19: pp. 773-776 CrossRef
    52. Suzuki, Y, St Onge, RP, Mani, R (2011) Knocking out multigene redundancies via cycles of sexual assortment and fluorescence selection. Nat Methods 8: pp. 159-164 CrossRef
    53. Tagwerker, C, Dupont, CL, Karas, BJ (2012) Sequence analysis of a complete 1.66聽Mb Prochlorococcus marinus MED4 genome cloned in yeast. Nucleic Acids Res 40: pp. 10375-10383 CrossRef
    54. Tischer, BK, Einem, J, Kaufer, B, Osterrieder, N (2006) Two-step red-mediated recombination for versatile high-efficiency markerless DNA manipulation in Escherichia coli. Biotechniques 40: pp. 191-197 CrossRef
    55. Tsuge, K, Matsui, K, Itaya, M (2003) One step assembly of multiple DNA fragments with a designed order and orientation in Bacillus subtilis plasmid. Nucleic Acids Res 31: pp. e133 CrossRef
    56. Tsuge, K, Matsui, K, Itaya, M (2007) Production of the non-ribosomal peptide plipastatin in Bacillus subtilis regulated by three relevant gene blocks assembled in a single movable DNA segment. J Biotechnol 129: pp. 592-603 CrossRef
    57. Wang, HH, Isaacs, FJ, Carr, PA (2009) Programming cells by multiplex genome engineering and accelerated evolution. Nature 460: pp. 894-898 CrossRef
    58. Warren, RL, Freeman, JD, Levesque, RC (2008) Transcription of foreign DNA in Escherichia coli. Genome Res 18: pp. 1798-1805 CrossRef
    59. Yamanaka, K, Reynolds, KA, Kersten, RD (2014) Direct cloning and refactoring of a silent lipopeptide biosynthetic gene cluster yields the antibiotic taromycin A. Proc Natl Acad Sci U S A 111: pp. 1957-1962 CrossRef
    60. Yang, XW, Model, P, Heintz, N (1997) Homologous recombination based modification in Escherichia coli and germline transmission in transgenic mice of a bacterial artificial chromosome. Nat Biotechnol 15: pp. 859-865 CrossRef
    61. Yu, D, Ellis, HM, Lee, EC (2000) An efficient recombination system for chromosome engineering in Escherichia coli. Proc Natl Acad Sci U S A 97: pp. 5978-5983 CrossRef
    62. Yu, BJ, Kang, KH, Lee, JH (2008) Rapid and efficient construction of markerless deletions in the Escherichia coli genome. Nucleic Acids Res 36: pp. e84 CrossRef
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Life Sciences
    Cell Biology
    Human Genetics
    Animal Genetics and Genomics
    Plant Genetics and Genomics
  • 出版者:Springer Netherlands
  • ISSN:1573-6849
文摘
Advances in synthetic biology methods to assemble and edit DNA are enabling genome engineering at a previously impracticable scale and scope. The synthesis of the Mycoplasma mycoides genome followed by its transplantation to convert a related cell into M. mycoides has transformed strain engineering. This approach exemplifies the combination of newly emerging chromosome-scale genome editing strategies that can be defined in three main steps: (1) chromosome acquisition into a microbial engineering platform, (2) alteration and improvement of the acquired chromosome, and (3) installation of the modified chromosome into the original or alternative organism. In this review, we outline recent progress in methods for acquiring chromosomes and chromosome-scale DNA molecules in the workhorse organisms Bacillus subtilis, Escherichia coli, and Saccharomyces cerevisiae. We present overviews of important genetic strategies and tools for each of the three organisms, point out their respective strengths and weaknesses, and highlight how the host systems can be used in combination to facilitate chromosome assembly or engineering. Finally, we highlight efforts for the installation of the cloned/altered chromosomes or fragments into the target organism and present remaining challenges in expanding this powerful experimental approach to a wider range of target organisms.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700