用户名: 密码: 验证码:
Neutralisation of HIV-1 cell-cell spread by human and llama antibodies
详细信息    查看全文
  • 作者:Laura E McCoy (1) (4)
    Elisabetta Groppelli (1)
    Christophe Blanchetot (2)
    Hans de Haard (2)
    Theo Verrips (3)
    Lucy Rutten (3)
    Robin A Weiss (1)
    Clare Jolly (1)

    1. Division of Infection and Immunity
    ; University College London ; London ; WC1E 6BT ; United Kingdom
    4. Current address
    ; Department of Immunology and Microbial Science ; The Scripps Research Institute ; La Jolla ; CA ; 92037 ; USA
    2. ArGEN-X BVBA
    ; Zwijnaarde ; Ghent ; Belgium
    3. QVQ bv
    ; 3584CH ; Utrecht ; The Netherlands
  • 关键词:HIV ; 1 ; Antibody ; Virological synapse ; Cell ; cell ; Neutralisation ; CD4 ; VHH
  • 刊名:Retrovirology
  • 出版年:2014
  • 出版时间:December 2014
  • 年:2014
  • 卷:11
  • 期:1
  • 全文大小:2,080 KB
  • 参考文献:1. Amanna, IJ, Messaoudi, I, Slifka, MK (2008) Protective immunity following vaccination: how is it defined?. Hum Vaccin 4: pp. 316-319 CrossRef
    2. Koff, WC, Burton, DR, Johnson, PR, Walker, BD, King, CR, Nabel, GJ, Ahmed, R, Bhan, MK, Plotkin, SA (2013) Accelerating next-generation vaccine development for global disease prevention. Science 340: pp. 1232910 CrossRef
    3. McCoy, LE, Weiss, RA (2013) Neutralizing antibodies to HIV-1 induced by immunization. J Exp Med 210: pp. 209-223 CrossRef
    4. Wei, X, Decker, JM, Liu, H, Zhang, Z, Arani, RB, Kilby, JM, Saag, MS, Wu, X, Shaw, GM, Kappes, JC (2002) Emergence of resistant human immunodeficiency virus type 1 in patients receiving fusion inhibitor (T-20) monotherapy. Antimicrob Agents Chemother 46: pp. 1896-1905 CrossRef
    5. Jolly, C, Kashefi, K, Hollinshead, M, Sattentau, QJ (2004) HIV-1 cell to cell transfer across an Env-induced, actin-dependent synapse. J Exp Med 199: pp. 283-293 CrossRef
    6. Rudnicka, D, Feldmann, J, Porrot, F, Wietgrefe, S, Guadagnini, S, Prevost, MC, Estaquier, J, Haase, AT, Sol-Foulon, N, Schwartz, O (2009) Simultaneous cell-to-cell transmission of human immunodeficiency virus to multiple targets through polysynapses. J Virol 83: pp. 6234-6246 CrossRef
    7. Sherer, NM, Lehmann, MJ, Jimenez-Soto, LF, Horensavitz, C, Pypaert, M, Mothes, W (2007) Retroviruses can establish filopodial bridges for efficient cell-to-cell transmission. Nat Cell Biol 9: pp. 310-315 CrossRef
    8. Sowinski, S, Jolly, C, Berninghausen, O, Purbhoo, MA, Chauveau, A, Kohler, K, Oddos, S, Eissmann, P, Brodsky, FM, Hopkins, C, Onfelt, B, Sattentau, Q, Davis, DM (2008) Membrane nanotubes physically connect T cells over long distances presenting a novel route for HIV-1 transmission. Nat Cell Biol 10: pp. 211-219 CrossRef
    9. Jolly, C, Mitar, I, Sattentau, QJ (2007) Adhesion molecule interactions facilitate human immunodeficiency virus type 1-induced virological synapse formation between T cells. J Virol 81: pp. 13916-13921 CrossRef
    10. Martin, N, Welsch, S, Jolly, C, Briggs, JA, Vaux, D, Sattentau, QJ (2010) Virological synapse-mediated spread of human immunodeficiency virus type 1 between T cells is sensitive to entry inhibition. J Virol 84: pp. 3516-3527 CrossRef
    11. Mazurov, D, Ilinskaya, A, Heidecker, G, Lloyd, P, Derse, D (2010) Quantitative comparison of HTLV-1 and HIV-1 cell-to-cell infection with new replication dependent vectors. PLoS Pathog 6: pp. e1000788 CrossRef
    12. Groot, F, Welsch, S, Sattentau, QJ (2008) Efficient HIV-1 transmission from macrophages to T cells across transient virological synapses. Blood 111: pp. 4660-4663 CrossRef
    13. Chen, P, Hubner, W, Spinelli, MA, Chen, BK (2007) Predominant mode of human immunodeficiency virus transfer between T cells is mediated by sustained Env-dependent neutralization-resistant virological synapses. J Virol 81: pp. 12582-12595 CrossRef
    14. Sourisseau, M, Sol-Foulon, N, Porrot, F, Blanchet, F, Schwartz, O (2007) Inefficient human immunodeficiency virus replication in mobile lymphocytes. J Virol 81: pp. 1000-1012 CrossRef
    15. Jolly, C, Welsch, S, Michor, S, Sattentau, QJ (2011) The regulated secretory pathway in CD4(+) T cells contributes to human immunodeficiency virus type-1 cell-to-cell spread at the virological synapse. PLoS Pathog 7: pp. e1002226 CrossRef
    16. Sigal, A, Kim, JT, Balazs, AB, Dekel, E, Mayo, A, Milo, R, Baltimore, D (2011) Cell-to-cell spread of HIV permits ongoing replication despite antiretroviral therapy. Nature 477: pp. 95-98 CrossRef
    17. Titanji, BK, Aasa-Chapman, M, Pillay, D, Jolly, C (2013) Protease inhibitors effectively block cell-to-cell spread of HIV-1 between T cells. Retrovirology 10: pp. 161 CrossRef
    18. Abela, IA, Berlinger, L, Schanz, M, Reynell, L, Gunthard, HF, Rusert, P, Trkola, A (2012) Cell-cell transmission enables HIV-1 to evade inhibition by potent CD4bs directed antibodies. PLoS Pathog 8: pp. e1002634 CrossRef
    19. Kwong, PD, Mascola, JR, Nabel, GJ (2012) Rational design of vaccines to elicit broadly neutralizing antibodies to HIV-1. Cold Spring Harb Perspect Med 1: pp. a007278
    20. Burton, DR, Hessell, AJ, Keele, BF, Klasse, PJ, Ketas, TA, Moldt, B, Dunlop, DC, Poignard, P, Doyle, LA, Cavacini, L, Veazey, RS, Moore, JP (2011) Limited or no protection by weakly or nonneutralizing antibodies against vaginal SHIV challenge of macaques compared with a strongly neutralizing antibody. Proc Natl Acad Sci U S A 108: pp. 11181-11186 CrossRef
    21. Hessell, AJ, Poignard, P, Hunter, M, Hangartner, L, Tehrani, DM, Bleeker, WK, Parren, PW, Marx, PA, Burton, DR (2009) Effective, low-titer antibody protection against low-dose repeated mucosal SHIV challenge in macaques. Nat Med 15: pp. 951-954 CrossRef
    22. McCoy, LE, Quigley, AF, Strokappe, NM, Bulmer-Thomas, B, Seaman, MS, Mortier, D, Rutten, L, Chander, N, Edwards, CJ, Ketteler, R, Davis, D, Verrips, T, Weiss, RA (2012) Potent and broad neutralization of HIV-1 by a llama antibody elicited by immunization. J Exp Med 209: pp. 1091-1103 CrossRef
    23. Wu, X, Yang, ZY, Li, Y, Hogerkorp, CM, Schief, WR, Seaman, MS, Zhou, T, Schmidt, SD, Wu, L, Xu, L, Longo, NS, McKee, K, O'Dell, S, Louder, MK, Wycuff, DL, Feng, Y, Nason, M, Doria-Rose, N, Connors, M, Kwong, PD, Roederer, M, Wyatt, RT, Nabel, GJ, Mascola, JR (2010) Rational design of envelope identifies broadly neutralizing human monoclonal antibodies to HIV-1. Science 329: pp. 856-861 CrossRef
    24. Corti, D, Langedijk, JP, Hinz, A, Seaman, MS, Vanzetta, F, Fernandez-Rodriguez, BM, Silacci, C, Pinna, D, Jarrossay, D, Balla-Jhagjhoorsingh, S, Willems, B, Zekveld, MJ, Dreja, H, O'Sullivan, E, Pade, C, Orkin, C, Jeffs, SA, Montefiori, DC, Davis, D, Weissenhorn, W, McKnight, A, Heeney, JL, Sallusto, F, Sattentau, QJ, Weiss, RA, Lanzavecchia, A (2010) Analysis of memory B cell responses and isolation of novel monoclonal antibodies with neutralizing breadth from HIV-1-infected individuals. PLoS One 5: pp. e8805 CrossRef
    25. Hamers-Casterman, C, Atarhouch, T, Muyldermans, S, Robinson, G, Hamers, C, Songa, EB, Bendahman, N, Hamers, R (1993) Naturally occurring antibodies devoid of light chains. Nature 363: pp. 446-448 CrossRef
    26. Gorlani, A, Brouwers, J, McConville, C, Bijl, P, Malcolm, K, Augustijns, P, Quigley, AF, Weiss, R, Haard, H, Verrips, T (2011) Llama antibody fragments have good potential for application as HIV type 1 topical microbicides. AIDS Res Hum Retroviruses 28: pp. 198-205 CrossRef
    27. Vanlandschoot, P, Stortelers, C, Beirnaert, E, Ibanez, LI, Schepens, B, Depla, E, Saelens, X (2011) Nanobodies(R): new ammunition to battle viruses. Antiviral Res 92: pp. 389-407 CrossRef
    28. Walker, LM, Phogat, SK, Chan-Hui, PY, Wagner, D, Phung, P, Goss, JL, Wrin, T, Simek, MD, Fling, S, Mitcham, JL, Lehrman, JK, Priddy, FH, Olsen, OA, Frey, SM, Hammond, PW, Principal Investigators, PG, Kaminsky, S, Zamb, T, Moyle, M, Koff, WC, Poignard, P, Burton, DR (2009) Broad and potent neutralizing antibodies from an African donor reveal a new HIV-1 vaccine target. Science 326: pp. 285-289 CrossRef
    29. Trkola, A, Purtscher, M, Muster, T, Ballaun, C, Buchacher, A, Sullivan, N, Srinivasan, K, Sodroski, J, Moore, JP, Katinger, H (1996) Human monoclonal antibody 2G12 defines a distinctive neutralization epitope on the gp120 glycoprotein of human immunodeficiency virus type 1. J Virol 70: pp. 1100-1108
    30. Conley, AJ, Kessler, JA, Boots, LJ, Tung, JS, Arnold, BA, Keller, PM, Shaw, AR, Emini, EA (1994) Neutralization of divergent human immunodeficiency virus type 1 variants and primary isolates by IAM-41-2F5, an anti-gp41 human monoclonal antibody. Proc Natl Acad Sci U S A 91: pp. 3348-3352 CrossRef
    31. Dimitrov, DS, Willey, RL, Sato, H, Chang, LJ, Blumenthal, R, Martin, MA (1993) Quantitation of human immunodeficiency virus type 1 infection kinetics. J Virol 67: pp. 2182-2190
    32. Weng, J, Krementsov, DN, Khurana, S, Roy, NH, Thali, M (2009) Formation of syncytia is repressed by tetraspanins in human immunodeficiency virus type 1-producing cells. J Virol 83: pp. 7467-7474 CrossRef
    33. Pantophlet, R, Ollmann Saphire, E, Poignard, P, Parren, PW, Wilson, IA, Burton, DR (2003) Fine mapping of the interaction of neutralizing and nonneutralizing monoclonal antibodies with the CD4 binding site of human immunodeficiency virus type 1 gp120. J Virol 77: pp. 642-658 CrossRef
    34. Haard, HJ, Bezemer, S, Ledeboer, AM, Muller, WH, Boender, PJ, Moineau, S, Coppelmans, MC, Verkleij, AJ, Frenken, LG, Verrips, CT (2005) Llama antibodies against a lactococcal protein located at the tip of the phage tail prevent phage infection. J Bacteriol 187: pp. 4531-4541 CrossRef
    35. Trkola, A, Dragic, T, Arthos, J, Binley, JM, Olson, WC, Allaway, GP, Cheng-Mayer, C, Robinson, J, Maddon, PJ, Moore, JP (1996) CD4-dependent, antibody-sensitive interactions between HIV-1 and its co-receptor CCR-5. Nature 384: pp. 184-187 CrossRef
    36. Scanlan, CN, Pantophlet, R, Wormald, MR, Saphire, EO, Calarese, D, Stanfield, R, Wilson, IA, Katinger, H, Dwek, RA, Burton, DR, Rudd, PM (2003) The carbohydrate epitope of the neutralizing anti-HIV-1 antibody 2G12. Adv Exp Med Biol 535: pp. 205-218 CrossRef
    37. Calarese, DA, Scanlan, CN, Zwick, MB, Deechongkit, S, Mimura, Y, Kunert, R, Zhu, P, Wormald, MR, Stanfield, RL, Roux, KH, Kelly, JW, Rudd, PM, Dwek, RA, Katinger, H, Burton, DR, Wilson, IA (2003) Antibody domain exchange is an immunological solution to carbohydrate cluster recognition. Science 300: pp. 2065-2071 CrossRef
    38. Pejchal, R, Walker, LM, Stanfield, RL, Phogat, SK, Koff, WC, Poignard, P, Burton, DR, Wilson, IA (2010) Structure and function of broadly reactive antibody PG16 reveal an H3 subdomain that mediates potent neutralization of HIV-1. Proc Natl Acad Sci U S A 107: pp. 11483-11488 CrossRef
    39. Binley, JM, Wrin, T, Korber, B, Zwick, MB, Wang, M, Chappey, C, Stiegler, G, Kunert, R, Zolla-Pazner, S, Katinger, H, Petropoulos, CJ, Burton, DR (2004) Comprehensive cross-clade neutralization analysis of a panel of anti-human immunodeficiency virus type 1 monoclonal antibodies. J Virol 78: pp. 13232-13252 CrossRef
    40. Sattentau, Q (2008) Avoiding the void: cell-to-cell spread of human viruses. Nat Rev Microbiol 6: pp. 815-826 CrossRef
    41. Jolly, C, Booth, NJ, Neil, SJ (2010) Cell-cell spread of human immunodeficiency virus type 1 overcomes tetherin/BST-2-mediated restriction in T cells. J Virol 84: pp. 12185-12199 CrossRef
    42. Gousset, K, Ablan, SD, Coren, LV, Ono, A, Soheilian, F, Nagashima, K, Ott, DE, Freed, EO (2008) Real-time visualization of HIV-1 GAG trafficking in infected macrophages. PLoS Pathog 4: pp. e1000015 CrossRef
    43. Sanders, RW, Derking, R, Cupo, A, Julien, JP, Yasmeen, A, Val, N, Kim, HJ, Blattner, C, Pena, AT, Korzun, J, Golabek, M, Los Reyes, K, Ketas, TJ, Gils, MJ, King, CR, Wilson, IA, Ward, AB, Klasse, PJ, Moore, JP (2013) A next-generation cleaved, soluble HIV-1 Env Trimer, BG505 SOSIP.664 gp140, expresses multiple epitopes for broadly neutralizing but not non-neutralizing antibodies. PLoS Pathog 9: pp. e1003618 CrossRef
    44. Malbec, M, Porrot, F, Rua, R, Horwitz, J, Klein, F, Halper-Stromberg, A, Scheid, JF, Eden, C, Mouquet, H, Nussenzweig, MC, Schwartz, O (2013) Broadly neutralizing antibodies that inhibit HIV-1 cell to cell transmission. J Exp Med 210: pp. 2813-2821 CrossRef
    45. Massanella, M, Puigdomenech, I, Cabrera, C, Fernandez-Figueras, MT, Aucher, A, Gaibelet, G, Hudrisier, D, Garcia, E, Bofill, M, Clotet, B, Blanco, J (2009) Antigp41 antibodies fail to block early events of virological synapses but inhibit HIV spread between T cells. AIDS 23: pp. 183-188 CrossRef
    46. Hultberg, A, Temperton, NJ, Rosseels, V, Koenders, M, Gonzalez-Pajuelo, M, Schepens, B, Ibanez, LI, Vanlandschoot, P, Schillemans, J, Saunders, M, Weiss, RA, Saelens, X, Melero, JA, Verrips, CT, Gucht, S, Haard, HJ (2011) Llama-derived single domain antibodies to build multivalent, superpotent and broadened neutralizing anti-viral molecules. PLoS One 6: pp. e17665 CrossRef
    47. Lutje Hulsik, D, Liu, YY, Strokappe, NM, Battella, S, Khattabi, M, McCoy, LE, Sabin, C, Hinz, A, Hock, M, Macheboeuf, P, Bonvin, AM, Langedijk, JP, Davis, D, Forsman Quigley, A, Aasa-Chapman, MM, Seaman, MS, Ramos, A, Poignard, P, Favier, A, Simorre, JP, Weiss, RA, Verrips, CT, Weissenhorn, W, Rutten, L (2013) A gp41 MPER-specific llama VHH requires a hydrophobic CDR3 for neutralization but not for antigen recognition. PLoS Pathog 9: pp. e1003202 CrossRef
    48. Moulard, M, Phogat, SK, Shu, Y, Labrijn, AF, Xiao, X, Binley, JM, Zhang, MY, Sidorov, IA, Broder, CC, Robinson, J, Parren, PW, Burton, DR, Dimitrov, DS (2002) Broadly cross-reactive HIV-1-neutralizing human monoclonal Fab selected for binding to gp120-CD4-CCR5 complexes. Proc Natl Acad Sci U S A 99: pp. 6913-6918 CrossRef
    49. Hessell, AJ, Hangartner, L, Hunter, M, Havenith, CE, Beurskens, FJ, Bakker, JM, Lanigan, CM, Landucci, G, Forthal, DN, Parren, PW, Marx, PA, Burton, DR (2007) Fc receptor but not complement binding is important in antibody protection against HIV. Nature 449: pp. 101-104 CrossRef
    50. Ugolini, S, Mondor, I, Parren, PW, Burton, DR, Tilley, SA, Klasse, PJ, Sattentau, QJ (1997) Inhibition of virus attachment to CD4+ target cells is a major mechanism of T cell line-adapted HIV-1 neutralization. J Exp Med 186: pp. 1287-1298 CrossRef
    51. Duncan, CJ, Russell, RA, Sattentau, QJ (2013) High multiplicity HIV-1 cell-to-cell transmission from macrophages to CD4+ T cells limits antiretroviral efficacy. AIDS 27: pp. 2201-2206 CrossRef
    52. Duenas-Decamp, MJ, O鈥機onnell, OJ, Corti, D, Zolla-Pazner, S, Clapham, PR (2012) The W100 pocket on HIV-1 gp120 penetrated by b12 is not a target for other CD4bs monoclonal antibodies. Retrovirology 9: pp. 9 CrossRef
    53. Murooka, TT, Deruaz, M, Marangoni, F, Vrbanac, VD, Seung, E, Andrian, UH, Tager, AM, Luster, AD, Mempel, TR (2012) HIV-infected T cells are migratory vehicles for viral dissemination. Nature 490: pp. 283-287 CrossRef
    54. Sewald, X, Gonzalez, DG, Haberman, AM, Mothes, W (2012) In vivo imaging of virological synapses. Nat Commun 3: pp. 1320 CrossRef
    55. Keele, BF, Giorgi, EE, Salazar-Gonzalez, JF, Decker, JM, Pham, KT, Salazar, MG, Sun, C, Grayson, T, Wang, S, Li, H, Wei, X, Jiang, C, Kirchherr, JL, Gao, F, Anderson, JA, Ping, LH, Swanstrom, R, Tomaras, GD, Blattner, WA, Goepfert, PA, Kilby, JM, Saag, MS, Delwart, EL, Busch, MP, Cohen, MS, Montefiori, DC, Haynes, BF, Gaschen, B, Athreya, GS, Lee, HY (2008) Identification and characterization of transmitted and early founder virus envelopes in primary HIV-1 infection. Proc Natl Acad Sci U S A 105: pp. 7552-7557 CrossRef
    56. Salazar-Gonzalez, JF, Salazar, MG, Keele, BF, Learn, GH, Giorgi, EE, Li, H, Decker, JM, Wang, S, Baalwa, J, Kraus, MH, Parrish, NF, Shaw, KS, Guffey, MB, Bar, KJ, Davis, KL, Ochsenbauer-Jambor, C, Kappes, JC, Saag, MS, Cohen, MS, Mulenga, J, Derdeyn, CA, Allen, S, Hunter, E, Markowitz, M, Hraber, P, Perelson, AS, Bhattacharya, T, Haynes, BF, Korber, BT, Hahn, BH (2009) Genetic identity, biological phenotype, and evolutionary pathways of transmitted/founder viruses in acute and early HIV-1 infection. J Exp Med 206: pp. 1273-1289 CrossRef
    57. Li, M, Gao, F, Mascola, JR, Stamatatos, L, Polonis, VR, Koutsoukos, M, Voss, G, Goepfert, P, Gilbert, P, Greene, KM, Bilska, M, Kothe, DL, Salazar-Gonzalez, JF, Wei, X, Decker, JM, Hahn, BH, Montefiori, DC (2005) Human immunodeficiency virus type 1 env clones from acute and early subtype B infections for standardized assessments of vaccine-elicited neutralizing antibodies. J Virol 79: pp. 10108-10125 CrossRef
    58. Li, M, Salazar-Gonzalez, JF, Derdeyn, CA, Morris, L, Williamson, C, Robinson, JE, Decker, JM, Li, Y, Salazar, MG, Polonis, VR, Mlisana, K, Karim, SA, Hong, K, Greene, KM, Bilska, M, Zhou, J, Allen, S, Chomba, E, Mulenga, J, Vwalika, C, Gao, F, Zhang, M, Korber, BT, Hunter, E, Hahn, BH, Montefiori, DC (2006) Genetic and neutralization properties of subtype C human immunodeficiency virus type 1 molecular env clones from acute and early heterosexually acquired infections in Southern Africa. J Virol 80: pp. 11776-11790 CrossRef
    59. Derdeyn, CA, Decker, JM, Sfakianos, JN, Wu, X, O鈥橞rien, WA, Ratner, L, Kappes, JC, Shaw, GM, Hunter, E (2000) Sensitivity of human immunodeficiency virus type 1 to the fusion inhibitor T-20 is modulated by coreceptor specificity defined by the V3 loop of gp120. J Virol 74: pp. 8358-8367 CrossRef
  • 刊物主题:Virology; Infectious Diseases; Cancer Research;
  • 出版者:BioMed Central
  • ISSN:1742-4690
文摘
Background Direct cell-cell spread of HIV-1 is a very efficient mode of viral dissemination, with increasing evidence suggesting that it may pose a considerable challenge to controlling viral replication in vivo. Much current vaccine research involves the study of broadly neutralising antibodies (bNabs) that arise during natural infection with the aims of eliciting such antibodies by vaccination or incorporating them into novel therapeutics. However, whether cell-cell spread of HIV-1 can be effectively targeted by bNabs remains unclear, and there is much interest in identifying antibodies capable of efficiently neutralising virus transmitted by cell-cell contact. Results In this study we have tested a panel of bNAbs for inhibition of cell-cell spread, including some not previously evaluated for inhibition of this mode of HIV-1 transmission. We found that three CD4 binding site antibodies, one from an immunised llama (J3) and two isolated from HIV-1-positive patients (VRC01 and HJ16) neutralised cell-cell spread between T cells, while antibodies specific for glycan moieties (2G12, PG9, PG16) and the MPER (2F5) displayed variable efficacy. Notably, while J3 displayed a high level of potency during cell-cell spread we found that the small size of the llama heavy chain-only variable region (VHH) J3 is not required for efficient neutralisation since recombinant J3 containing a full-length human heavy chain Fc domain was significantly more potent. J3 and J3-Fc also neutralised cell-cell spread of HIV-1 from primary macrophages to CD4+ T cells. Conclusions In conclusion, while bNabs display variable efficacy at preventing cell-cell spread of HIV-1, we find that some CD4 binding site antibodies can inhibit this mode of HIV-1 dissemination and identify the recently described llama antibody J3 as a particularly potent inhibitor. Effective neutralisation of cell-cell spread between physiologically relevant cell types by J3 and J3-Fc supports the development of VHH J3 nanobodies for therapeutic or prophylactic applications.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700