用户名: 密码: 验证码:
Exogenous melatonin improves growth and photosynthetic capacity of cucumber under salinity-induced stress
详细信息    查看全文
  • 作者:L. Y. Wang ; J. L. Liu ; W. X. Wang ; Y. Sun
  • 关键词:antioxidant enzymes ; chlorophyll fluorescence ; gas exchange ; growth analysis ; melatonin ; salt tolerance
  • 刊名:Photosynthetica
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:54
  • 期:1
  • 页码:19-27
  • 全文大小:1,517 KB
  • 参考文献:Aebi H.: Catalase in vitro. — Methods Enzymol. 105: 121–126, 1984.CrossRef PubMed
    Afreen F., Zobayed S.M., Kozai T.: Melatonin in Glycyrrhiza uralensis: response of plant roots to spectral quality of light and UV-B radiation. — J. Pineal Res. 41: 108–115, 2006.CrossRef PubMed
    Arnao M.B.: Phytomelatonin: discovery, content, and role in plants. — Adv. Bot. 2014:1–11, 2014.CrossRef
    Arnao M.B., Hernández-Ruiz J.: Melatonin promotes adventitious and lateral root regeneration in etiolated hypocotyls of Lupinus albus L. — J. Pineal Res. 42: 147–152, 2007.CrossRef PubMed
    Arnao M.B., Hernández-Ruiz J.: Protective effect of melatonin against chlorophyll degradation during the senescence of barley leaves. — J. Pineal Res. 46: 58–63, 2009.CrossRef PubMed
    Arnao M.B., Hernández-Ruiz J.: Growth conditions determine different melatonin levels in Lupinus albus L. — J. Pineal Res. 55: 149–155, 2013a.CrossRef PubMed
    Arnao M.B., Hernández-Ruiz J.: Growth conditions influence the melatonin content of tomato plants. — Food Chem. 138: 1212–1214, 2013b.CrossRef PubMed
    Arnao M.B., Hernández-Ruiz J.: Melatonin: plant growth regulator and/or biostimulator during stress? — Trends Plant Sci. 19: 789–797, 2014.CrossRef PubMed
    Choi S., Dadakhujaev S., Ryu H. et al.: Melatonin protects against oxidative stress in granular corneal dystrophy type 2 corneal fibroblasts by mechanisms that involve membrane melatonin receptors. — J. Pineal Res. 51: 94–103, 2011.CrossRef PubMed
    Dionisio-Sese M.L., Tobita S.: Antioxidant responses of rice seedlings to salinity stress. — Plant Sci. 135: 1–9, 1998.CrossRef
    Foyer C., Noctor G.: Oxygen processing in photosynthesis: regulation and signalling. — New Phytol. 146: 359–388, 2000.CrossRef
    Gómez-Pando L.R., Álvarez-Castro R., Eguiluz-de la Barra A.: Effect of salt stress on peruvian germplasm of Chenopodium quinoa Willd.: A promising crop. — J. Agron. Crop Sci. 196: 391–396, 2010.CrossRef
    Galano A., Tan D.X., Reiter R.J.: Melatonin as a natural ally against oxidative stress: a physicochemical examination. — J. Pineal Res. 51: 1–16, 2011.CrossRef PubMed
    Griffith O.W.: Determination of glutathione and glutathione disulfide using glutathione reductase and 2-vinylpyridine. — Anal. Biochem. 106: 207–212, 1980.CrossRef PubMed
    Hardeland R., Cardinali D.P., Srinivasan V. et al.: Melatonin — a pleiotropic, orchestrating regulator molecule. — Prog. Neurobiol. 93: 350–384, 2011.CrossRef PubMed
    Hernández-Ruiz J., Arnao M.B.: Melatonin stimulates the expansion of etiolated lupin cotyledons. — Plant Growth Regul. 55: 29–34, 2008.CrossRef
    Hernandez-Ruiz J., Cano A., Arnao M.B.: Melatonin: a growthstimulating compound present in lupin tissues. — Planta 220: 140–144, 2004.CrossRef PubMed
    Hodges D.M., DeLong J.M., Forney C.F., Prange R.K.: Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. — Planta 207: 604–611, 1999.CrossRef
    Jampeetong A., Brix H.: Effects of NaCl salinity on growth, morphology, photosynthesis and proline accumulation of Salvinia natans. — Aquat. Bot. 91: 181–186, 2009.CrossRef
    Jung-Hynes B., Reiter R.J., Ahmad N.: Sirtuins, melatonin and circadian rhythms: building a bridge between aging and cancer. — J. Pineal Res. 48: 9–19, 2010.CrossRef PubMed PubMedCentral
    Khalid A.M., Nasim A.R., Abdulbasset M.A.: Salicylic acidmediated alleviation of cadmium toxicity in maize leaves. — J. Plant Sci. 2: 276–281, 2014.
    Kolář J., Johnson C.H., Macháčková I.: Exogenously applied melatonin (N-acetyl-5-methoxytryptamine) affects flowering of the short-day plant Chenopodium rubrum. — Physiol. Plantarum 118: 605–612, 2003.CrossRef
    Lei X.Y., Zhu R.Y., Zhang G.Y., Dai Y.R.: Attenuation of coldinduced apoptosis by exogenous melatonin in carrot suspension cells: the possible involvement of polyamines. — J. Pineal Res. 36: 126–131, 2004.CrossRef PubMed
    Li C., Wang P., Wei Z. et al.: The mitigation effects of exogenous melatonin on salinity-induced stress in Malus hupehensis. — J. Pineal Res. 53: 298–306, 2012.CrossRef PubMed
    Lichtenthaler K., Wellburn A.: Determinations of total carotenoids and chlorophylls a and a of leaf extracts in different solvents. — Biochem. Soc. Trans. 11: 591–592, 1983.CrossRef
    Logan B.A., Grace S. C., Adams W. W., Demmig-Adams B.: Seasonal differences in xanthophylls cycle characteristics and antioxidants in Mahonia repens growing in different light environments. — Oecologia 116: 9–17, 1998.
    McKersie B.D., Bowley S.R., Harjanto E., Leprince O.: Waterdeficit tolerance and field performance of transgenic alfalfa overexpressing superoxide dismutase. — Plant Physiol. 111: 1177–1181, 1996.PubMed PubMedCentral
    Mittler R.: Oxidative stress, antioxidants and stress tolerance. — Trends Plant Sci. 7: 405–410, 2002.CrossRef PubMed
    Motilva V., García-Mauriño S., Talero E., Illanes M.: New paradigms in chronic intestinal inflammation and colon cancer: role of melatonin. — J. Pineal Res. 51: 44–60, 2011.CrossRef PubMed
    Munns R., Tester M.: Mechanisms of salinity tolerance. — Annu. Rev. Plant Biol. 59: 651–681, 2008.CrossRef PubMed
    Nakano Y., Asada K.: Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. — Plant Cell Physiol. 22: 867–880, 1981.
    Noctor G., Foyer C.H.: Ascorbate and glutathione: Keeping active oxygen under control. — Annu. Rev. Plant Phys. 49: 249–279, 1998.CrossRef
    Parida A.K., Das A.B.: Salt tolerance and salinity effects on plants: a review. — Ecotox. Environ. Safe. 60: 324–349, 2005.CrossRef
    Patterson B.D., Macrae E.A., Ferguson I.B.: Estimation of hydrogen peroxide in plant extracts using titanium(IV). — Anal. Biochem. 139: 487–492, 1984.CrossRef PubMed
    Radyukina N.L., Kartashov A.V., Ivanov Y.V. et al.: Functioning of defense systems in halophytes and glycophytes under progressing salinity. — Russ. J. Plant Physl+ 54: 806–815, 2007.CrossRef
    Rao M.V., Paliyath G., Ormrod D.P.: Ultraviolet-B- and ozoneinduced biochemical changes in antioxidant enzymes of Arabidopsis thaliana. — Plant Physiol. 110: 125–136, 1996.CrossRef PubMed PubMedCentral
    Reiter R.J., Tan D.X., Terron M.P. et al.: Melatonin and its metabolites: new findings regarding their production and their radical scavenging actions. — Acta. Biochim. Pol. 54: 1–9, 2007.PubMed
    Roncarati F., Rijstenbil J.W., Pistocchi R.: Photosynthetic performance, oxidative damage and antioxidants in Cylindrotheca closterium in response to high irradiance, UVB radiation and salinity. — Mar. Biol. 153: 965–973, 2008.CrossRef
    Smirnoff N.: The role of active oxygen in the response of plants to water deficit and desiccation. — New Phytol. 125: 27–58, 1993.CrossRef
    Sreenivasulu N., Grimm B., Wobus U., Weschke W.: Differential response of antioxidant compounds to salinity stress in salttolerant and salt-sensitive seedlings of foxtail millet (Setaria italica). — Physiol. Plantarum 109: 435–442, 2000.CrossRef
    Tan D.X., Manchester L.C., Liu X. et al.: Mitochondria and chloroplasts as the original sites of melatonin synthesis: a hypothesis related to melatonin’s primary function and evolution in eukaryotes. — J. Pineal Res. 54: 127–138, 2013.CrossRef PubMed
    Tan D.X., Manchester L.C., Terron M.P. et al.: One molecule, many derivatives: a never-ending interaction of melatonin with reactive oxygen and nitrogen species? — J. Pineal Res. 42: 28–42, 2007.CrossRef PubMed
    Wang P., Sun X., Li C. et al.: Long-term exogenous application of melatonin delays drought-induced leaf senescence in apple. — J. Pineal Res. 54: 292–302, 2013.CrossRef PubMed
    Wang P., Yin L., Liang D. et al.: Delayed senescence of apple leaves by exogenous melatonin treatment: toward regulating the ascorbate-glutathione cycle. — J. Pineal Res. 53: 11–20, 2012.CrossRef PubMed
    Xu S.C., He M.D., Zhong M. et al.: Melatonin protects against Nickel-induced neurotoxicity in vitro by reducing oxidative stress and maintaining mitochondrial function. — J. Pineal Res. 49: 86–94, 2010.PubMed
    Zhang N., Sun Q., Zhang H. et al.: Roles of melatonin in abiotic stress resistance in plants. — J. Exp. Bot. 66: 647–656, 2015CrossRef PubMed
    Zhang N., Zhao B., Zhang H.J. et al.: Melatonin promotes waterstress tolerance, lateral root formation, and seed germination in cucumber (Cucumis sativus L.). — J. Pineal Res. 54: 15–23, 2013.PubMed
    Zhang N., Zhao H., Yang R.C. et al.: Advances in melatonin and its functions in plants. — Agr. Sci. Tech. 13: 1833–1837, 2012.
    Zhu J.K.: Plant salt tolerance. — Trends Plant Sci. 6: 66–71, 2001.CrossRef PubMed
  • 作者单位:L. Y. Wang (1)
    J. L. Liu (1)
    W. X. Wang (1)
    Y. Sun (1)

    1. State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Life Sciences
    Plant Physiology
  • 出版者:Springer Netherlands
  • ISSN:1573-9058
文摘
Melatonin mediates many physiological processes in animals and plants. To examine the potential roles of melatonin in salinity tolerance, we investigated the effects of exogenous melatonin on growth and antioxidant system in cucumber under 200 mM NaCl stress conditions. The results showed that the melatonin-treated plants significantly increased growth mass and antioxidant protection. Under salinity stress, the addition of melatonin effectively alleviated the decrease in the net photosynthetic rate, the maximum quantum efficiency of PSII, and the total chlorophyll content. Our data also suggested that melatonin and the resistance of plants exhibited a concentration effect. The application of 50–150 μM melatonin significantly improved the photosynthetic capacity. Additionally, the pretreatment with melatonin reduced the oxidative damage under salinity stress by scavenging directly H2O2 or enhancing activity of antioxidant enzymes (including superoxide dismutase, peroxidase, catalase, ascorbate peroxidase) and concentrations of antioxidants (ascorbic acid and glutathione). Therefore, the melatonin-treated plants could effectively enhance their salinity tolerance. Additional key words antioxidant enzymes chlorophyll fluorescence gas exchange growth analysis melatonin salt tolerance

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700