用户名: 密码: 验证码:
Phosphodiesterase III Inhibition Increases cAMP Levels and Augments the Infarct Size Limiting Effect of a DPP-4 Inhibitor in Mice with Type-2 Diabetes Mellitus
详细信息    查看全文
  • 作者:Yochai Birnbaum (1) (2) (3)
    Alexander C. Castillo (1)
    Jinqiao Qian (1) (4)
    Shukuan Ling (1)
    Hongmei Ye (5)
    Jose R. Perez-Polo (1)
    Mandeep Bajaj (6)
    Yumei Ye (1)
  • 关键词:Diabetes mellitus ; cAMP ; protein kinase A ; Phosphodiesterase ; III inhibitor ; Infarct size ; Ischemia ; Reperfusion ; PTEN ; Dipeptidyl ; peptidase ; 4
  • 刊名:Cardiovascular Drugs and Therapy
  • 出版年:2012
  • 出版时间:December 2012
  • 年:2012
  • 卷:26
  • 期:6
  • 页码:445-456
  • 全文大小:480KB
  • 参考文献:1. Yazbeck R, Howarth GS, Abbott CA. Dipeptidyl peptidase inhibitors, an emerging drug class for inflammatory disease? Trends Pharmacol Sci. 2009;30:600-. CrossRef
    2. Jose T, Inzucchi SE. Cardiovascular effects of the DPP-4 inhibitors. Diab Vasc Dis Res. 2012;9:109-6. CrossRef
    3. Gorrell MD. Dipeptidyl peptidase IV and related enzymes in cell biology and liver disorders. Clin Sci (Lond). 2005;108:277-2. CrossRef
    4. Holst JJ. The physiology of glucagon-like peptide 1. Physiol Rev. 2007;87:1409-9. CrossRef
    5. Lee JG, Kang DG, Yu JR, Kim Y, Kim J, Koh G, et al. Changes in adenosine deaminase activity in patients with type 2 diabetes mellitus and effect of DPP-4 inhibitor treatment on ADA activity. Diabetes Metab J. 2011;35:149-8. mj.2011.35.2.149">CrossRef
    6. Ye Y, Perez-Polo JR, Aguilar D, Birnbaum Y. The potential effects of anti-diabetic medications on myocardial ischemia-reperfusion injury. Basic Res Cardiol. 2011;106:925-2. CrossRef
    7. Lonborg J, Vejlstrup N, Kelbaek H, Botker HE, Kim WY, Mathiasen AB et al. Exenatide reduces reperfusion injury in patients with ST-segment elevation myocardial infarction. Eur Heart J. 2011.
    8. Chinda K, Chattipakorn S, Chattipakorn N. Cardioprotective effects of incretin during ischaemia-reperfusion. Diab Vasc Dis Res. 2012
    9. Ye Y, Keyes KT, Zhang C, Perez-Polo JR, Lin Y, Birnbaum Y. The myocardial infarct size-limiting effect of sitagliptin is PKA-dependent, whereas the protective effect of pioglitazone is partially dependent on PKA. Am J Physiol Heart Circ Physiol. 2010;298:H1454-5. CrossRef
    10. Huisamen B, Genis A, Marais E, Lochner A. Pre-treatment with a DPP-4 inhibitor is infarct sparing in hearts from obese, pre-diabetic rats. Cardiovasc Drugs Ther. 2011;25:13-0. CrossRef
    11. Chinda K, Palee S, Surinkaew S, Phornphutkul M, Chattipakorn S, Chattipakorn N. Cardioprotective effect of dipeptidyl peptidase-4 inhibitor during ischemia-reperfusion injury. Int J Cardiol. 2012
    12. Yin M, Sillje HH, Meissner M, van Gilst WH, de Boer RA. Early and late effects of the DPP-4 inhibitor vildagliptin in a rat model of post-myocardial infarction heart failure. Cardiovasc Diabetol. 2011;10:85. CrossRef
    13. Doyle ME, Egan JM. Mechanisms of action of glucagon-like peptide 1 in the pancreas. Pharmacol Ther. 2007;113:546-3. mthera.2006.11.007">CrossRef
    14. Sanada S, Asanuma H, Tsukamoto O, Minamino T, Node K, Takashima S, et al. Protein kinase A as another mediator of ischemic preconditioning independent of protein kinase C. Circulation. 2004;110:51-. CrossRef
    15. Kambayashi J, Liu Y, Sun B, Shakur Y, Yoshitake M, Czerwiec F. Cilostazol as a unique antithrombotic agent. Curr Pharm Des. 2003;9:2289-02. CrossRef
    16. Liu Y, Fong M, Cone J, Wang S, Yoshitake M, Kambayashi J. Inhibition of adenosine uptake and augmentation of ischemia-induced increase of interstitial adenosine by cilostazol, an agent to treat intermittent claudication. J Cardiovasc Pharmacol. 2000;36:351-0. CrossRef
    17. Manickavasagam S, Ye Y, Lin Y, Perez-Polo RJ, Huang MH, Lui CY, et al. The cardioprotective effect of a statin and cilostazol combination: relationship to Akt and endothelial nitric oxide synthase activation. Cardiovasc Drugs Ther. 2007;21:321-0. CrossRef
    18. Birnbaum Y, Castillo AC, Ling S, Bajaj M, Perez-Polo JR, Ye Y. Amplification of the myocardial infarct size limiting effects of exenatide with cilostazol, a phosphodiesterase III inhibitor [Abstract]. J Am Col Cardiol. 2012;59:A110. CrossRef
    19. Ye Y, Lin Y, Perez-Polo JR, Uretsky BF, Ye Z, Tieu BC, et al. Phosphorylation of 5-lipoxygenase at ser523 by protein kinase A determines whether pioglitazone and atorvastatin induce proinflammatory leukotriene B4 or anti-inflammatory 15-epi-lipoxin a4 production. J Immunol. 2008;181:3515-3.
    20. Mocanu MM, Field DC, Yellon DM. A potential role for PTEN in the diabetic heart. Cardiovasc Drugs Ther. 2006;20:319-1. CrossRef
    21. Tsang A, Hausenloy DJ, Mocanu MM, Carr RD, Yellon DM. Preconditioning the diabetic heart: the importance of Akt phosphorylation. Diabetes. 2005;54:2360-. CrossRef
    22. Keyes KT, Xu J, Long B, Zhang C, Hu Z, Ye Y. Pharmacological inhibition of PTEN limits myocardial infarct size and improves left ventricular function postinfarction. Am J Physiol Heart Circ Physiol. 2010;298:H1198-08. CrossRef
    23. Hong KW, Kim KY, Shin HK, Lee JH, Choi JM, Kwak YG, et al. Cilostazol prevents tumor necrosis factor-alpha-induced cell death by suppression of phosphatase and tensin homolog deleted from chromosome 10 phosphorylation and activation of Akt/cyclic AMP response element-binding protein phosphorylation. J Pharmacol Exp Ther. 2003;306:1182-0. CrossRef
    24. Kim KY, Shin HK, Lee JH, Kim CD, Lee WS, Rhim BY, et al. Cilostazol enhances casein kinase 2 phosphorylation and suppresses tumor necrosis factor-alpha-induced increased phosphatase and tensin homolog deleted from chromosome 10 phosphorylation and apoptotic cell death in SK-N-SH cells. J Pharmacol Exp Ther. 2004;308:97-04. CrossRef
    25. Lee JH, Park SY, Lee WS, Hong KW. Lack of antiapoptotic effects of antiplatelet drug, aspirin and clopidogrel, and antioxidant, MCI-186, against focal ischemic brain damage in rats. Neurol Res. 2005;27:483-2. CrossRef
    26. Ye Y, Qian J, Castillo AC, Perez-Polo JR, Birnbaum Y. Aliskiren and valsartan reduce myocardial AT1 receptor expression and limit myocardial infarct size in diabetic mice. Cardiovasc Drugs Ther. 2011;25:505-5. CrossRef
    27. Park SY, Lee JH, Kim KY, Kim EK, Yun SJ, Kim CD, et al. Cilostazol increases 3T3-L1 preadipocyte differentiation with improved glucose uptake associated with activation of peroxisome proliferator-activated receptor-gamma transcription. Atherosclerosis. 2008;201:258-5. CrossRef
    28. Nakaya Y, Minami A, Sakamoto S, Niwa Y, Ohnaka M, Harada N, et al. Cilostazol, a phosphodiesterase inhibitor, improves insulin sensitivity in the Otsuka Long-Evans Tokushima Fatty Rat, a model of spontaneous NIDDM. Diabetes Obes Metab. 1999;1:37-1. CrossRef
    29. Park SY, Shin HK, Lee JH, Kim CD, Lee WS, Rhim BY, et al. Cilostazol ameliorates metabolic abnormalities with suppression of proinflammatory markers in a db/db mouse model of type 2 diabetes via activation of peroxisome proliferator-activated receptor gamma transcription. J Pharmacol Exp Ther. 2009;329:571-. CrossRef
    30. Shen YH, Zhang L, Gan Y, Wang X, Wang J, LeMaire SA, et al. Up-regulation of PTEN (phosphatase and tensin homolog deleted on chromosome ten) mediates p38 MAPK stress signal-induced inhibition of insulin signaling. A cross-talk between stress signaling and insulin signaling in resistin-treated human endothelial cells. J Biol Chem. 2006;281:7727-6. CrossRef
    31. Tani T, Uehara K, Sudo T, Marukawa K, Yasuda Y, Kimura Y. Cilostazol, a selective type III phosphodiesterase inhibitor, decreases triglyceride and increases HDL cholesterol levels by increasing lipoprotein lipase activity in rats. Atherosclerosis. 2000;152:299-05. CrossRef
    32. O’Donnell ME, Badger SA, Sharif MA, Makar RR, Young IS, Lee B, et al. The vascular and biochemical effects of cilostazol in diabetic patients with peripheral arterial disease. Vasc Endovascular Surg. 2009;43:132-3. CrossRef
    33. Smith JA. Measuring treatment effects of cilostazol on clinical trial endpoints in patients with intermittent claudication. Clin Cardiol. 2002;25:91-. CrossRef
    34. Feliciello A, Gottesman ME, Avvedimento EV. cAMP-PKA signaling to the mitochondria: protein scaffolds, mRNA and phosphatases. Cell Signal. 2005;17:279-7. CrossRef
    35. Inserte J, Garcia-Dorado D, Ruiz-Meana M, Agullo L, Pina P, Soler-Soler J. Ischemic preconditioning attenuates calpain-mediated degradation of structural proteins through a protein kinase A-dependent mechanism. Cardiovasc Res. 2004;64:105-4. CrossRef
    36. Sanada S, Kitakaze M, Papst PJ, Asanuma H, Node K, Takashima S, et al. Cardioprotective effect afforded by transient exposure to phosphodiesterase III inhibitors: the role of protein kinase A and p38 mitogen-activated protein kinase. Circulation. 2001;104:705-0. CrossRef
    37. Vadas O, Burke JE, Zhang X, Berndt A, Williams RL. Structural basis for activation and inhibition of class I phosphoinositide 3-kinases. Sci Signal. 2011;4:re2. CrossRef
    38. Cosentino C, Di Domenico M, Porcellini A, Cuozzo C, De Gregorio G, Santillo MR, et al. p85 regulatory subunit of PI3K mediates cAMP-PKA and estrogens biological effects on growth and survival. Oncogene. 2007;26:2095-03. CrossRef
    39. De Gregorio G, Coppa A, Cosentino C, Ucci S, Messina S, Nicolussi A, et al. The p85 regulatory subunit of PI3K mediates TSH-cAMP-PKA growth and survival signals. Oncogene. 2007;26:2039-7. CrossRef
    40. Bellis A, Castaldo D, Trimarco V, Monti MG, Chivasso P, Sadoshima J, et al. Cross-talk between PKA and Akt protects endothelial cells from apoptosis in the late ischemic preconditioning. Arterioscler Thromb Vasc Biol. 2009;29:1207-2. CrossRef
    41. Oudit GY, Penninger JM. Cardiac regulation by phosphoinositide 3-kinases and PTEN. Cardiovasc Res. 2009;82:250-0. CrossRef
    42. Ross AH, Gericke A. Phosphorylation keeps PTEN phosphatase closed for business. Proc Natl Acad Sci U S A. 2009;106:1297-. CrossRef
    43. Hausenloy DJ, Yellon DM. Survival kinases in ischemic preconditioning and postconditioning. Cardiovasc Res. 2006;70:240-3. CrossRef
    44. Harris MB, Blackstone MA, Sood SG, Li C, Goolsby JM, Venema VJ, et al. Acute activation and phosphorylation of endothelial nitric oxide synthase by HMG-CoA reductase inhibitors. Am J Physiol Heart Circ Physiol. 2004;287:H560-. CrossRef
    45. Qian J, Ling S, Castillo AC, Long B, Birnbaum Y, Ye Y. Regulation of phosphatase and tensin homolog on chromosome 10 in response to hypoxia. Am J Physiol Heart Circ Physiol. 2012;302:H1806-7. CrossRef
    46. Lee JH, Kim KY, Lee YK, Park SY, Kim CD, Lee WS, et al. Cilostazol prevents focal cerebral ischemic injury by enhancing casein kinase 2 phosphorylation and suppression of phosphatase and tensin homolog deleted from chromosome 10 phosphorylation in rats. J Pharmacol Exp Ther. 2004;308:896-03. CrossRef
    47. Shaywitz AJ, Greenberg ME. CREB: a stimulus-induced transcription factor activated by a diverse array of extracellular signals. Annu Rev Biochem. 1999;68:821-1. m.68.1.821">CrossRef
    48. Marais E, Genade S, Lochner A. CREB activation and ischaemic preconditioning. Cardiovasc Drugs Ther. 2008;22:3-7. CrossRef
    49. Nagy N, Shiroto K, Malik G, Huang CK, Gaestel M, Abdellatif M, et al. Ischemic preconditioning involves dual cardio-protective axes with p38MAPK as upstream target. J Mol Cell Cardiol. 2007;42:981-0. mcc.2007.02.010">CrossRef
    50. Das S, Cordis GA, Maulik N, Das DK. Pharmacological preconditioning with resveratrol: role of CREB-dependent Bcl-2 signaling via adenosine A3 receptor activation. Am J Physiol Heart Circ Physiol. 2005;288:H328-5. CrossRef
    51. Eliseev RA, Vanwinkle B, Rosier RN, Gunter TE. Diazoxide-mediated preconditioning against apoptosis involves activation of cAMP-response element-binding protein (CREB) and NFkappaB. J Biol Chem. 2004;279:46748-4. CrossRef
    52. Hong KW, Lee JH, Kima KY, Park SY, Lee WS. Cilostazol: therapeutic potential against focal cerebral ischemic damage. Curr Pharm Des. 2006;12:565-3. CrossRef
    53. Gu T, Zhang Z, Wang J, Guo J, Shen WH, Yin Y. CREB is a novel nuclear target of PTEN phosphatase. Cancer Res. 2011;71:2821-. CrossRef
    54. Timmers L, Henriques JP, de Kleijn DP, Devries JH, Kemperman H, Steendijk P, et al. Exenatide reduces infarct size and improves cardiac function in a porcine model of ischemia and reperfusion injury. J Am Coll Cardiol. 2009;53:501-0. CrossRef
    55. Ban K, Kim KH, Cho CK, Sauve M, Diamandis EP, Backx PH, et al. Glucagon-like peptide (GLP)-1(9-36)amide-mediated cytoprotection is blocked by exendin(9-39) yet does not require the known GLP-1 receptor. Endocrinology. 2010;151:1520-1. CrossRef
    56. Bose AK, Mocanu MM, Carr RD, Brand CL, Yellon DM. Glucagon-like peptide 1 can directly protect the heart against ischemia/reperfusion injury. Diabetes. 2005;54:146-1. CrossRef
    57. Birnbaum Y, Ye Y, Lin Y, Freeberg SY, Nishi SP, Martinez JD, et al. Augmentation of myocardial production of 15-epi-lipoxin-a4 by pioglitazone and atorvastatin in the rat. Circulation. 2006;114:929-5. CrossRef
    58. Keyes KT, Ye Y, Lin Y, Zhang C, Perez-Polo JR, Gjorstrup P, et al. Resolvin E1 protects the rat heart against reperfusion injury. Am J Physiol Heart Circ Physiol. 2010;299:H153-4. CrossRef
  • 作者单位:Yochai Birnbaum (1) (2) (3)
    Alexander C. Castillo (1)
    Jinqiao Qian (1) (4)
    Shukuan Ling (1)
    Hongmei Ye (5)
    Jose R. Perez-Polo (1)
    Mandeep Bajaj (6)
    Yumei Ye (1)

    1. The Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, 301 University Blvd, Galveston, TX, 77555, USA
    2. The Section of Cardiology, Baylor College of Medicine, Houston, TX, USA
    3. Texas Heart Institute, St. Luke Episcopal Hospital, Houston, TX, USA
    4. Department of Anesthesiology, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
    5. Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
    6. The Section of Endocrinology, Baylor College of Medicine, Houston, TX, USA
  • ISSN:1573-7241
文摘
Purpose We assessed whether phosphodiesterase-III inhibition with cilostazol (Cil) augments the infarct size (IS)-limiting effects of MK0626 (MK), a dipeptidyl-peptidase-4 (DPP4) inhibitor, by increasing intracellular cAMP in mice with type-2 diabetes. Methods Db/Db mice received 3-day MK (0, 1, 2 or 3?mg/kg/d) with or without Cil (15?mg/kg/d) by oral gavage and were subjected to 30?min coronary artery occlusion and 24?h reperfusion. Results Cil and MK at 2 and 3?mg/kg/d significantly reduced IS. Cil and MK had additive effects at all three MK doses. IS was the smallest in the MK-3+Cil. MK in a dose dependent manner and Cil increased cAMP levels (p-lt;-.001). cAMP levels were higher in the combination groups at all MK doses. MK-2 and Cil increased PKA activity when given alone; however, PKA activity was significantly higher in the MK-2+Cil group than in the other groups. Both MK-2 and Cil increased myocardial levels of Ser133 P-CREB, Ser523 P-5-lipoxygenase, Ser473P-Akt and Ser633 P-eNOS. These levels were significantly higher in the MK-2+Cil group. Myocardial PTEN (Phosphatase and tensin homolog on chromosome ten) levels were significantly higher in the Db/Db mice compared to nondiabetic mice. MK-2 and Cil normalized PTEN levels. PTEN levels tended to be lower in the combination group than in the MK and Cil alone groups. Conclusion MK and Cil have additive IS-limiting effects in diabetic mice. The additive effects are associated with an increase in myocardial cAMP levels and PKA activity with downstream phosphorylation of Akt, eNOS, 5-lipoxygenase and CREB and downregulation of PTEN expression.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700