用户名: 密码: 验证码:
Computational analysis of human N-acetylgalactosamine-6-sulfate sulfatase enzyme: an update in genotype–phenotype correlation for Morquio A
详细信息    查看全文
  • 作者:Sergio Olarte-Avellaneda (1) (2)
    Alexander Rodríguez-López (2)
    Carlos Javier Alméciga-Díaz (2)
    Luis Alejandro Barrera (2)
  • 关键词:MPS IV A ; GALNS ; Keratan sulfate ; Chondroitin ; 6 ; sulfate ; Molecular modeling ; Computational molecular docking
  • 刊名:Molecular Biology Reports
  • 出版年:2014
  • 出版时间:November 2014
  • 年:2014
  • 卷:41
  • 期:11
  • 页码:7073-7088
  • 全文大小:3,006 KB
  • 参考文献:1. Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P, Kondrashov AS, Sunyaev SR (2010) A method and server for predicting damaging missense mutations. Nat Methods 7:248-49 CrossRef
    2. Alméciga-Díaz C, Monta?o AM, Tomatsu S, Barrera L (2010) Adeno-associated virus gene transfer on Morquio A: effect of promoters and sulfatase-modifying Factor 1. FEBS J 277:3608-619 CrossRef
    3. Alméciga-Díaz C, Rueda-Paramo M, Espejo A, Echeverri O, Monta?o A, Tomatsu S, Barrera L (2009) Effect of Elongation Factor 1α promoter and SUMF1 over in vitro expression of / N-acetylgalactosamine-6-sulfate sulfatase. Mol Biol Rep 36:1863-870 CrossRef
    4. Balamurugan B, Roshan B, Hameed BS, Sumathi K, Senthilkumar R, Udayakumar A, Babu KHV, Kalaivani M, Sowmiya G, Sivasankari P, Saravanan S, Ranjani CV, Gopalakrishnan K, Selvakumar KN, Jaikumar M, Brindha T, Michael D, Sekar K (2007) PSAP: protein structure analysis package. J Appl Crystallogr 40:773-77 CrossRef
    5. Cosma M, Pepe P, Annunziata I, Newbold R, Grompe M, Parenti G, Ballabio A (2003) The multiple sulfatase deficiency gene encodes an essential and limiting factor for the activity of sulfatases. Cell 113:445-56 CrossRef
    6. Crunkhorn S (2013) Trial watch: enzyme replacement success in Phase III trial for rare metabolic disorder. Nat Rev Drug Discov 12:12 CrossRef
    7. Dundas J, Ouyang Z, Tseng J, Binkowski A, Turpaz Y, Liang J (2006) CASTp: computed atlas of surface topography of proteins with structural and topographical mapping of functionally annotated residues. Nucleic Acids Res 34:W116–W118 CrossRef
    8. Dung VC, Tomatsu S, Montano AM, Gottesman G, Bober MB, Mackenzie W, Maeda M, Mitchell GA, Suzuki Y, Orii T (2013) Mucopolysaccharidosis IVA: correlation between genotype, phenotype and keratan sulfate levels. Mol Genet Metab 110:129-38 CrossRef
    9. Dvorak-Ewell M, Wendt D, Hague C, Christianson T, Koppaka V, Crippen D, Kakkis E, Vellard M (2010) Enzyme replacement in a human model of mucopolysaccharidosis IVA in vitro and its biodistribution in the cartilage of wild type mice. PLoS One 5:e12194 CrossRef
    10. Edgar RC (2004) MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinform 5:113 CrossRef
    11. Funderburgh J (2002) Keratan sulfate biosynthesis. IUBMB Life 54:187-94 CrossRef
    12. Ghosh D (2007) Human sulfatases: a structural perspective to catalysis. Cell Mol Life Sci 64:2013-022 CrossRef
    13. Guex N, Peitsch MC (1997) SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis 18:2714-723 CrossRef
    14. Gutierrez M, Garcia-Vallejo F, Tomatsu S, Ceron F, Alméciga-Díaz C, Domínguez M, Barrera L (2008) Construction of an adenoassociated virus-derived vector for the treatment of Morquio A disease. Biomedica 28:448-59 CrossRef
    15. Kornfeld S (1987) Trafficking of lysosomal enzymes. FASEB J 1:462-68
    16. Kubaski F, Brusius-Facchin AC, Palhares HM, Balarin MA, Viapiana-Camelier M, Guidobono R, Burin MG, Giugliani R, Leistner-Segal S (2013) Identification of a novel missense mutation in Brazilian patient with a severe form of mucopolysaccharidosis type IVA. Gene 517:112-15 Alexander Rodríguez-López (2)
    Carlos Javier Alméciga-Díaz (2)
    Luis Alejandro Barrera (2)

    1. Clinical Bacteriology Program, School of Health Sciences, Universidad Colegio Mayor de Cundinamarca, Bogotá, D.C., Colombia
    2. Proteins Expression and Purification Laboratory, Institute for the Study of Inborn Errors of Metabolism, School of Sciences, Pontificia Universidad Javeriana, Kra 7 No. 43-82 Building 53, Room 303A, Bogotá, D.C., Colombia
  • ISSN:1573-4978
文摘
Mucopolysaccharidosis IV A (MPS IV A) is a lysosomal storage disease produced by the deficiency of N-acetylgalactosamine-6-sulfate sulfatase (GALNS) enzyme. Although genotype–phenotype correlations have been reported, these approaches have not enabled to establish a complete genotype–phenotype correlation, and they have not considered a ligand–enzyme interaction. In this study, we expanded the in silico evaluation of GALNS mutations by using several bioinformatics tools. Tertiary GALNS structure was modeled and used for molecular docking against galactose-6-sulfate, N-acetylgalactosamine-6-sulfate, keratan sulfate, chondroitin-6-sulfate, and the artificial substrate 4-methylumbelliferyl-β-d-galactopyranoside-6-sulfate. Furthermore, we considered the evolutionary residue conservation, change conservativeness, position within GALNS structure, and the impact of amino acid substitution on the structure and function of GALNS. Molecular docking showed that amino acids involved in ligand interaction correlated with those observed in other human sulfatases, and mutations within the active cavity reduced affinity of all evaluated ligands. Combination of several bioinformatics approaches allowed to explaine 90?% of the missense mutations affecting GALNS, and the prediction of the phenotype for another 21 missense mutations. In summary, we have shown for the first time a docking evaluation of natural and artificial ligands for human GALNS, and proposed an update in genotype–phenotype correlation for Morquio A, based on the use of multiple parameters to predict the disease severity.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700