用户名: 密码: 验证码:
Modeling aerosol dynamics during forest fires
详细信息    查看全文
  • 作者:A. E. Aloyan (1)
  • 刊名:Izvestiya, Atmospheric and Oceanic Physics
  • 出版年:2009
  • 出版时间:February 2009
  • 年:2009
  • 卷:45
  • 期:1
  • 页码:55-68
  • 全文大小:315KB
  • 参考文献:1. M. C. MacCracken, R. D. Cess, G. R. Potter, “Climatic Effects of Anthropogenic Arctic Aerosols and Illustration of Climatic Feedback Mechanisms with 2D Climatic Models,-J. Geophys. Res. D 91, 14445-4450 (1986). external" href="http://dx.doi.org/10.1029/JD091iD13p14445">CrossRef
    2. A. M. Grishin, / Mathematical Modeling of Forest Fires and New Ways of Fire Fighting (Nauka, Novosibirsk, 1992) [in Russian].
    3. A. E. Aloyan, / Nonhydrostatic Models of Local Atmospheric Processes, Preprint No. 479 (Computer Center, Siberian Branch of the USSR Academy of Sciences, Novosibirsk, 1984) [in Russian].
    4. V. V. Penenko and A. E. Aloyan, / Models and Methods for Environmental Problems (Nauka, Moscow, 1985) [in Russian].
    5. M. A. Sofronov and A. D. Vakurov, / Fire in Forests (Nauka, Novosibirsk, 1981) [in Russian].
    6. B. D. Amiro, J. B. Todd, and B. M. Wotton, “Direct Carbon from Canadian Forest Fires,-Can. J. Forest Res. 31, 512-25 (2001). external" href="http://dx.doi.org/10.1139/cjfr-31-3-512">CrossRef
    7. G. A. Dorrer, / Mathematical Models for Forest-Fire Dynamics (Lesnaya Promyshlennost- Moscow, 1979) [in Russian].
    8. J. S. Reid, P. V. Hobbs, R. J. Ferek, et al., “Physical, Chemical, and Optical Properties of Regional Hazes Dominated by Smoke in Brazil,-J. Geophys. Res. 103, 32 059-2 080 (1998).
    9. Yu. A. Gostintsev, N. P. Kopylov, A. M. Ryzhkov, and N. R. Khasanov, “Convective Transport of Combustion Substances in the Atmosphere over Large Fires,-Izv. Akad. Nauk SSSR, Ser. Mekh. Zhidk. Gaz. No. 4, 47-2 (1990).
    10. R. C. Rothermel, / A Mathematical Model for Predicting Fire Spread in Wildland Fuels, Research Paper INT-115 (US Dept. of Agriculture, Forest Service, Intermountain Forest and Range Experiment Station, Ogden, 1972).
    11. I. R. Brown, / Field Test of a Rate-Spread Model in Slash Fuels, INT-116 (US Dept. of Agriculture, Forest Service, Intermountain Forest and Range Experiment Station, Ogden, 1972).
    12. M. A. Sofronov, / Forest Fires in the Mountains of Southern Siberia (Nauka, Moscow, 1967) [in Russian].
    13. L. F. Radke and P. V. Hegg, et al., “Effects of Ageing on the Smoke from a Large Forest Fire,-Atmos. Res. 38, 315-32 (1995). external" href="http://dx.doi.org/10.1016/0169-8095(95)00003-A">CrossRef
    14. O. Sero-Guillaume and J. Margerit, “Modelling Forest Fires. Part I: A Complete Set of Equations Derived by Extended Irreversible Thermodynamics,-Int. J. Heat Mass Transfer 45, 1705-722 (2002). external" href="http://dx.doi.org/10.1016/S0017-9310(01)00248-4">CrossRef
    15. A. E. Aolyan and V. O. Arutyunyan, “Modeling Aerosol Dynamics and Cloud Formation during Forest Fires,-Ekol. Vestn. Nauchn. Tsentrov ChES, No. 4, 31-3 (2008).
    16. V. N. Piskunov, A. I. Golubev, E. A. Goncharov, et al., “Kinetic Modeling of Composite Particles Coagulation,-J. Aerosol Sci. 28, 1215-231 (1997). external" href="http://dx.doi.org/10.1016/S0021-8502(96)00066-3">CrossRef
    17. A. E. Aloyan, V. D. Egorov, G. I. Marchuk, et al., “Aerosol Formation Mathematical Modelling with Consideration for Condensation Kinetics,-Russ. J. Num. Analysis Math. Model. 7, 457-71 (1992). external" href="http://dx.doi.org/10.1515/rnam.1992.7.6.457">CrossRef
    18. A. E. Aloyan, V. O. Arutyunyan, A. A. Lushnikov, et al., “Transport of Coagulating Aerosol in the Atmosphere,-J. Aerosol Sci. 28, 67-5 (1997). external" href="http://dx.doi.org/10.1016/S0021-8502(96)00043-2">CrossRef
    19. A. E. Aloyan and V. N. Piskunov, “Modeling the Regional Dynamics of Gaseous Admixtures and Aerosols,-Izv. Akad. Nauk, Fiz. Atmos. Okeana 41, 328-40 (2005) [Izv., Atmos. Ocean. Phys. 41, 296-07 (2005)].
    20. V. P. Dymnikov and A. E. Aloyan, “Monotonic Schemes for Solving Transfer Equations in the Problems of Weather Forecasting, Ecology, and Climate Theory,-Izv. Akad. Nauk SSSR, Fiz. Atmos. Okeana 26, 1237-247 (1990).
    21. J. A. Businger, I. C. Wyngard, Y. Izumi, et al., “Flux-Profile Relationships in the Atmospheric Surface Layer,-J. Atmos. Sci. 28, 181-89 (1971). external" href="http://dx.doi.org/10.1175/1520-0469(1971)028<0181:FPRITA>2.0.CO;2">CrossRef
    22. G. I. Marchuk, / Methods of Numerical Mathematics, 2nd ed. (Springer, New York, 1975; Nauka, Moscow, 1977).
    23. V. N. Piskunov, / Theoretical Models of the Kinetics of Aerosol Formation (RFYaTs-VNIIEF, Sarov, 2000) [in Russian].
    24. T. Y. Palmer and L. I. Norchutt, “Convective Columns above Large Experimental Fires,-Fire Technol. 11, 111-18 (1975). external" href="http://dx.doi.org/10.1007/BF02589941">CrossRef
    25. J. Turner, / Buoyancy Effects in Fluids (Cambridge Univ. Press, Cambridge, 1973; Mir, Moscow, 1977).
  • 作者单位:A. E. Aloyan (1)

    1. Institute of Numerical Mathematics, Russian Academy of Sciences, ul. Gubkina 8, Moscow, 119333, Russia
  • ISSN:1555-628X
文摘
A hydrodynamic model is used to reproduce the atmospheric circulation during forest fires. The dynamics is simulated with an improved model of free convection with allowance for heat flux emission from the fire area. Against the background of the atmospheric circulation patterns obtained, the problem of aerosol evolution and size distribution due to the forest’s combustible materials from the fire area was solved. The evolution of soot particles is described by solving the kinetic equations of condensation and coagulation. The results of numerical experiments to develop a process that considers water-vapor condensation in a moist atmosphere are presented.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700