用户名: 密码: 验证码:
Aurora kinase B inhibition reduces the proliferation of metastatic melanoma cells and enhances the response to chemotherapy
详细信息    查看全文
  • 作者:Letizia Porcelli (1)
    Gabriella Guida (2)
    Anna E Quatrale (1)
    Tiziana Cocco (2)
    Letizia Sidella (1)
    Immacolata Maida (2)
    Rosa M Iacobazzi (1)
    Anna Ferretta (2)
    Diana A Stolfa (1)
    Sabino Strippoli (3)
    Stefania Guida (4)
    Stefania Tommasi (5)
    Michele Guida (3)
    Amalia Azzariti (1)

    1. Clinical and Preclinical Pharmacology Laboratory
    ; National Cancer Research Centre Istituto Tumori Giovanni Paolo II ; Viale O. Flacco ; 65 ; 70124 ; Bari ; Italy
    2. Department of Basic Medical Sciences
    ; Neurosciences and Sense Organs ; University of Bari ; P.zza Giulio Cesare ; 70124 ; Bari ; Italy
    3. Medical Oncology Department
    ; National Cancer Research Centre Istituto Tumori Giovanni Paolo II ; Viale O. Flacco ; 65 ; 70124 ; Bari ; Italy
    4. Unit of Dermatology and Venereology
    ; University of Bari ; P.zza Giulio Cesare ; 70124 ; Bari ; Italy
    5. Molecular Genetics Laboratory
    ; National Cancer Research Centre Istituto Tumori Giovanni Paolo II ; Viale O. Flacco ; 65 ; 70124 ; Bari ; Italy
  • 关键词:Melanoma ; Barasertib ; Vemurafenib ; Nab ; paclitaxel ; BRAF status
  • 刊名:Journal of Translational Medicine
  • 出版年:2015
  • 出版时间:December 2015
  • 年:2015
  • 卷:13
  • 期:1
  • 全文大小:1,328 KB
  • 参考文献:1. Guida M, Pisconti S, Colucci G. Metastatic melanoma: the new era of targeted therapy. Expert Opin Ther Targets. 2012;Suppl 2:S61鈥?0. CrossRef
    2. Chapman PB, Hauschild A, Robert C, Haanen JB, Ascierto P, Larkin J, et al. Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N Engl J Med. 2011;364:2507鈥?6. CrossRef
    3. Hauschild A, Grob JJ, Demidov LV, Jouary T, Gutzmer R, Millward M, et al. Dabrafenib in BRAF-mutated metastatic melanoma: a multicentre, open-label, phase 3 randomised controlled trial. Lancet. 2012;380:358鈥?5. CrossRef
    4. Wagle N, Emery C, Berger MF, Davis MJ, Sawyer A, Pochanard P, et al. Dissecting therapeutic resistance to RAF inhibition in melanoma by tumor genomic profiling. J Clin Oncol. 2011;29:3085鈥?6. CrossRef
    5. Tentori L, Lacal PM, Graziani G. Challenging resistance mechanisms to therapies for metastatic melanoma. Trends Pharmacol Sci. 2013;34:656鈥?6. CrossRef
    6. Flaherty KT, Robert C, Hersey P, Nathan P, Garbe C, Milhem M, et al. Improved survival with MEK inhibition in BRAF-mutated melanoma. N Engl J Med. 2012;367:107鈥?4. CrossRef
    7. Flaherty KT, Infante JR, Daud A, Gonzalez R, Kefford RF, Sosman J, et al. Combined BRAF and MEK inhibition in melanoma with BRAF V600 mutations. N Engl J Med. 2012;367:1694鈥?03. CrossRef
    8. Mackiewicz-Wysocka M, Zolnierek J, Wysocki PJ. New therapeutic options in systemic treatment of advanced cutaneous melanoma. Expert Opin Investig Drugs. 2013;22:181鈥?0. CrossRef
    9. Podhajcer OL, Benedetti LG, Girotti MR, Prada F, Salvatierra E, Llera AS. The role of the matricellular protein SPARC in the dynamic interaction between the tumor and the host. Cancer Metastasis Rev. 2008;27:691鈥?05. CrossRef
    10. Hersh EM, O鈥橠ay SJ, Ribas A, Samlowski WE, Gordon MS, Shechter DE, et al. A phase 2 clinical trial of nab-paclitaxel in previously treated and chemotherapy-naive patients with metastatic melanoma. Cancer. 2010;116:155鈥?3.
    11. Kottschade LA, Suman VJ, Amatruda 3rd T, McWilliams RR, Mattar BI, Nikcevich DA, et al. A phase II trial of nab-paclitaxel (ABI-007) and carboplatin in patients with unresectable stage IV melanoma: a north central cancer treatment group study, N057E1. Cancer. 2011;117:1704鈥?0. CrossRef
    12. Hersh E, Del Vecchio M, Brown MP, Kefford R, Loquai C, Testori A, et al. A phase III trial of nab-paclitaxel versus dacarbazine in chemotherapy-naive patients with metastatic melanoma: a subanalysis based on BRAF status. J Clin Oncol. 2013;31(suppl):abstr 9030.
    13. Caputo E, Miceli R, Motti ML, Tat茅 R, Fratangelo F, Botti G, et al. AurkA inhibitors enhance the effects of B-RAF and MEK inhibitors in melanoma treatment. J Transl Med. 2014;12(1):216. CrossRef
    14. Xie L, Meyskens FLJ. The pan-Aurora kinase inhibitor, PHA-739358, induces apoptosi and inhibits migration in melanoma cell lines. Melanoma Res. 2013;23:102鈥?3. CrossRef
    15. Pirker C, L枚tsch D, Spiegl-Kreinecker S, Jantscher F, Sutterl眉ty H, Micksche M, et al. Response of experimental malignant melanoma models to the pan-Aurora kinase inhibitor VE-465. Exp Dermatol. 2010;19:1040鈥?. CrossRef
    16. Arbitrario JP, Belmont BJ, Evanchik MJ, Flanagan WM, Fucini RV, Hansen SK, et al. SNS-314, a pan-Aurora kinase inhibitor, shows potent anti-tumor activity and dosing flexibility in vivo. Cancer Chemother Pharmacol. 2010;65:707鈥?7. CrossRef
    17. Emanuel S, Rugg CA, Gruninger RH, Lin R, Fuentes-Pesquera A, Connolly PJ. The in vitro and in vivo effects of JNJ-7706621: a dual inhibitor of cyclin-dependent kinases and aurora kinases. Cancer Res. 2005;65:9038鈥?6. CrossRef
    18. Bonet C, Giuliano S, Ohanna M, Bille K, Allegra M, Lacour JP, et al. Aurora B is regulated by the mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) signaling pathway and is a valuable potential target in melanoma cells. J Biol Chem. 2012;287:29887鈥?8. CrossRef
    19. Vogt E, Kipp A, Eichenlaub-Ritter U. Aurora kinase B, epigenetic state of centromeric heterochromatin and chiasma resolution in oocytes. Reprod Biomed Online. 2009;19:352鈥?8. CrossRef
    20. Sharma A, Madhunapantula SV, Gowda R, Berg A, Neves RI, Robertson GP. Identification of Aurora kinase B and Wee1-like protein kinase as downstream targets of (V600E)B-RAF in melanoma. Am J Pathol. 2013;182:1151鈥?2. CrossRef
    21. Wang X, Moschos SJ, Becker D. Functional analysis and molecular targeting of aurora kinases a and B in advanced melanoma. Genes Cancer. 2010;1:952鈥?3. CrossRef
    22. Puig-Butill茅 JA, Badenas C, Ogbah Z, Carrera C, Aguilera P, Malvehy J, et al. Genetic alterations in RAS-regulated pathway in acral lentiginous melanoma. Exp Dermatol. 2013;22:148鈥?0. CrossRef
    23. Mehra R, Serebriiskii IG, Burtness B, Astsaturov I, Golemis EA. Aurora kinases in head and neck cancer. Lancet Oncol. 2013;14:e425鈥?5. CrossRef
    24. Marzo I, Naval J. Antimitotic drugs in cancer chemotherapy: promises and pitfalls. Biochem Pharmacol. 2013;86:703鈥?0. CrossRef
    25. Kollareddy M, Zheleva D, Dzubak P, Brahmkshatriya PS, Lepsik M, Hajduch M. Aurora kinase inhibitors: progress towards the clinic. Invest New Drugs. 2012;30:2411鈥?2. CrossRef
    26. Azzariti A, Bocci G, Porcelli L, Fioravanti A, Sini P, Simone GM, et al. Aurora B kinase inhibitor AZD1152: determinants of action and ability to enhance chemotherapeutics effectiveness in pancreatic and colon cancer. Br J Cancer. 2011;104:769鈥?0. CrossRef
    27. Zanna P, Maida I, Turpin Sevilla MC, Susca FC, Filotico R, Arciuli M, et al. Molecular characterization of novel melanoma cell lines. J Biol Regul Homeost Agents. 2011;25:239鈥?7.
    28. Zanna P, Maida I, Grieco C, Guida S, Turpin Sevilla MC, De Summa S, et al. Three novel human sporadic melanoma cell lines: signaling pathways controlled by MC1R, BRAF and 尾-catenins. J Biol Regul Homeost Agents. 2013;27:131鈥?1.
    29. Porcelli L, Quatrale AE, Mantuano P, Leo MG, Silvestris N, Rolland JF, et al. Optimize radiochemotherapy in pancreatic cancer: PARP inhibitors a new therapeutic opportunity. Mol Oncol. 2013;7:308鈥?2. onc.2012.10.002" target="_blank" title="It opens in new window">CrossRef
    30. Bernt E, Bergmeyer H. Lactate Dehydrogenase. In: Bergmeyer HU, editor. Anonymous. London: Academic Press; 1963. p. 736鈥?1.
    31. Atlante A, Giannattasio S, Bobba A, Gagliardi S, Petragallo V, Calissano P, et al. An increase in the ATP levels occurs in cerebellar granule cells en route to apoptosis in which ATP derives from both oxidative phosphorylation and anaerobic glycolysis. Biochim Biophys Acta. 2005;1708:50鈥?2. CrossRef
    32. Azzariti A, Porcelli L, Gatti G, Nicolin A, Paradiso A. Synergic antiproliferative and antiangiogenic effects of EGFR and mTor inhibitors on pancreatic cancer cells. Biochem Pharmacol. 2008;75:1035鈥?4. CrossRef
    33. Pacelli C, De Rasmo D, Signorile A, Grattagliano I, di Tullio G, D鈥橭razio A, et al. Mitochondrial defect and PGC-1伪 dysfunction in parkin-associated familial Parkinson鈥檚 disease. Biochim Biophys Acta. 1812;2011:1041鈥?3.
    34. Fisher R, Larkin J. Vemurafenib: a new treatment for BRAF-V600 mutated advanced melanoma. Cancer Manag Res. 2012;4:243鈥?2.
    35. Chen G, Davies MA. Targeted therapy resistance mechanisms and therapeutic implications in melanoma. Hematol Oncol Clin North Am. 2014;28:523鈥?6. CrossRef
    36. Wolanin K, Magalska A, Mosieniak G, Klinger R, McKenna S, Vejda S, et al. Curcumin affects components of the chromosomal passenger complex and induces mitotic catastrophe in apoptosis-resistant Bcr-Abl-expressing cells. Mol Cancer Res. 2006;4:457鈥?9. CrossRef
    37. Azzariti A, Quatrale AE, Porcelli L, Colabufo NA, Cantore M, Cassano G, et al. MC70 potentiates doxorubicin efficacy in colon and breast cancer in vitro treatment. Eur J Pharmacol. 2011;670:74鈥?4. CrossRef
    38. Lemasters JJ. V. Necrapoptosis and the mitochondrial permeability transition: shared pathways to necrosis and apoptosis. Am J Physiol. 1999;276:G1鈥?.
    39. Busc脿 R, Berra E, Gaggioli C, Khaled M, Bille K, Marchetti B, et al. Hypoxia-inducible factor 1{alpha} is a new target of microphthalmia-associated transcription factor (MITF) in melanoma cells. J Cell Biol. 2005;170:49鈥?9. CrossRef
    40. Grazia G, Penna I, Perotti V, Anichini A, Tassi E. Towards combinatorial targeted therapy in melanoma: from pre-clinical evidence to clinical application. Int J Oncol. 2014;45:929鈥?9.
    41. Nair JS, Ho AL, Tse AN, Coward J, Cheema H, Ambrosini G, et al. Aurora B kinase regulates the postmitotic endoreduplication checkpoint via phosphorylation of the retinoblastoma protein at serine 780. Mol Biol Cell. 2009;20:2218鈥?8. CrossRef
    42. Summers MK, Bothos J, Halazonetis TD. The CHFR mitotic checkpoint protein delays cell cycle progression by excluding Cyclin B1 from the nucleus. Oncogene. 2005;24:2589鈥?8. onc.1208428" target="_blank" title="It opens in new window">CrossRef
    43. Yu X, Minter-Dykhouse K, Malureanu L, Zhao WM, Zhang D, Merkle CJ, et al. Chfr is required for tumor suppression and Aurora A regulation. Nat Genet. 2005;37:401鈥?. CrossRef
    44. Simon R, Roychowdhury S. Implementing personalized cancer genomics in clinical trials. Nat Rev Drug Discov. 2013;12:358鈥?9. CrossRef
    45. Liu LL, Long ZJ, Wang LX, Zheng FM, Fang ZG, Yan M, et al. Inhibition of mTOR pathway sensitizes acute myeloid leukemia cells to aurora inhibitors by suppression of glycolytic metabolism. Mol Cancer Res. 2013;11:1326鈥?6. CrossRef
    46. Haq R, Shoag J, Andreu-Perez P, Yokoyama S, Edelman H, Rowe GC, et al. Oncogenic BRAF regulates oxidative metabolism via PGC1伪 and MITF. Cancer Cell. 2013;23:302鈥?5. CrossRef
    47. Liu Y, Hawkins OE, Su Y, Vilgelm AE, Sobolik T, Thu YM, et al. Targeting aurora kinases limits tumour growth through DNA damage-mediated senescence and blockade of NF-魏B impairs this drug-induced senescence. EMBO Mol Med. 2013;5:149鈥?6. CrossRef
    48. Rosner MR. MAP kinase meets mitosis: a role for Raf Kinase inhibitory protein in spindle checkpoint regulation. Cell Div. 2007;2:1. CrossRef
  • 刊物主题:Biomedicine general; Medicine/Public Health, general;
  • 出版者:BioMed Central
  • ISSN:1479-5876
文摘
Background The poor response to chemotherapy and the brief response to vemurafenib in metastatic melanoma patients, make the identification of new therapeutic approaches an urgent need. Interestingly the increased expression and activity of the Aurora kinase B during melanoma progression suggests it as a promising therapeutic target. Methods The efficacy of the Aurora B kinase inhibitor barasertib-HQPA was evaluated in BRAF mutated cells, sensitive and made resistant to vemurafenib after chronic exposure to the drug, and in BRAF wild type cells. The drug effectiveness has been evaluated as cell growth inhibition, cell cycle progression and cell migration. In addition, cellular effectors of drug resistance and response were investigated. Results The characterization of the effectors responsible for the resistance to vemurafenib evidenced the increased expression of MITF or the activation of Erk1/2 and p-38 kinases in the newly established cell lines with a phenotype resistant to vemurafenib. The sensitivity of cells to barasertib-HQPA was irrespective of BRAF mutational status. Barasertib-HQPA induced the mitotic catastrophe, ultimately causing apoptosis and necrosis of cells, inhibited cell migration and strongly affected the glycolytic metabolism of cells inducing the release of lactate. In association i) with vemurafenib the gain in effectiveness was found only in BRAF(V600K) cells while ii) with nab-paclitaxel, the combination was more effective than each drug alone in all cells. Conclusions These findings suggest barasertib as a new therapeutic agent and as enhancer of chemotherapy in metastatic melanoma treatment.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700