用户名: 密码: 验证码:
Modulating NMDA Receptor Function with d-Amino Acid Oxidase Inhibitors: Understanding Functional Activity in PCP-Treated Mouse Model
详细信息    查看全文
  • 作者:Henry Sershen ; Audrey Hashim ; David S. Dunlop ; Raymond F. Suckow…
  • 关键词:NMDA ; d ; amino acid oxidase ; d ; serine ; Sodium benzoate ; Ascorbic acid ; Schizophrenia
  • 刊名:Neurochemical Research
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:41
  • 期:1-2
  • 页码:398-408
  • 全文大小:858 KB
  • 参考文献:1.Javitt DC (2012) Twenty-five years of glutamate in schizophrenia: are we there yet? Schizophr Bull 38:911–913CrossRef PubMed PubMedCentral
    2.Laruelle M, Abi-Dargham A, van Dyck CH, Gil R, D’Souza CD, Erdos J, McCance E, Rosenblatt W, Fingado C, Zoghbi SS, Baldwin RM, Seibyl JP, Krystal JH, Charney DS, Innis RB (1996) Single photon emission computerized tomography imaging of amphetamine-induced dopamine release in drug-free schizophrenic subjects. Proc Natl Acad Sci USA 93:9235–9240CrossRef PubMed PubMedCentral
    3.Kegeles LS, Abi-Dargham A, Zea-Ponce Y, Rodenhiser-Hill J, Mann JJ, Van Heertum RL, Cooper TB, Carlsson A, Laruelle M (2000) Modulation of amphetamine-induced striatal dopamine release by ketamine in humans: implications for schizophrenia. Biol Psychiatry 48:627–640CrossRef PubMed
    4.Steeds H, Carhart-Harris RL, Stone JM (2015) Drug models of schizophrenia. Ther Adv Psychopharmacol 5:43–58CrossRef PubMed PubMedCentral
    5.Mouchlianitis E, Bloomfield MA, Law V, Beck K, Selvaraj S, Rasquinha N, Waldman A, Turkheimer FE, Egerton A, Stone J, Howes OD (2015) Treatment-resistant schizophrenia patients show elevated anterior cingulate cortex glutamate compared to treatment-responsive. Schizophr Bull. doi:10.​1093/​schbul/​sbv151 PubMed
    6.Lally J, MacCabe JH (2015) Antipsychotic medication in schizophrenia: a review. Br Med Bull 114:169–179CrossRef PubMed
    7.Heresco-Levy U, Silipo G, Javitt DC (1996) Glycinergic augmentation of NMDA receptor-mediated neurotransmission in the treatment of schizophrenia. Psychopharmacol Bull 32:731–740PubMed
    8.Woods SW, Walsh BC, Hawkins KA, Miller TJ, Saksa JR, D’Souza DC, Pearlson GD, Javitt DC, McGlashan TH, Krystal JH (2013) Glycine treatment of the risk syndrome for psychosis: report of two pilot studies. Eur Neuropsychopharmacol 23:931–940CrossRef PubMed PubMedCentral
    9.Kantrowitz JT, Malhotra AK, Cornblatt B, Silipo G, Balla A, Suckow RF, D’Souza C, Saksa J, Woods SW, Javitt DC (2010) High dose d -serine in the treatment of schizophrenia. Schizophr Res 121:125–130CrossRef PubMed PubMedCentral
    10.Kantrowitz JT, Woods SW, Petkova E, Cornblatt B, Corcoran CM, Chen H, Silipo G, Javitt DC (2015) d -serine for the treatment of negative symptoms in individuals at clinical high risk of schizophrenia: a pilot, double-blind, placebo-controlled, randomised parallel group mechanistic proof-of-concept trial. Lancet Psychiatry 2:403–412CrossRef PubMed
    11.Weiser M, Heresco-Levy U, Davidson M, Javitt DC, Werbeloff N, Gershon AA, Abramovich Y, Amital D, Doron A, Konas S, Levkovitz Y, Liba D, Teitelbaum A, Mashiach M, Zimmerman Y (2012) A multicenter, add-on randomized controlled trial of low-dose d -serine for negative and cognitive symptoms of schizophrenia. J Clin Psychiatry 73:e728–e734CrossRef PubMed
    12.Moller HJ, Czobor P (2015) Pharmacological treatment of negative symptoms in schizophrenia. Eur Arch Psychiatry Clin Neurosci 265:567–578CrossRef PubMed
    13.Williams RE, Lock EA (2004) d -serine-induced nephrotoxicity: possible interaction with tyrosine metabolism. Toxicology 201:231–238CrossRef PubMed
    14.Javitt DC (2015) Current and emergent treatments for symptoms and neurocognitive impairment in schizophrenia. Curr Treat Options Psychiatry 1:107–120CrossRef PubMed
    15.Supplisson S, Bergman C (1997) Control of NMDA receptor activation by a glycine transporter co-expressed in Xenopus oocytes. J Neurosci 17:4580–4590PubMed
    16.Javitt DC, Hashim A, Sershen H (2005) Modulation of striatal dopamine release by glycine transport inhibitors. Neuropsychopharmacology 30:649–656CrossRef PubMed
    17.Amiaz R, Kent I, Rubinstein K, Sela BA, Javitt D, Weiser M (2015) Safety, tolerability and pharmacokinetics of open label sarcosine added on to anti-psychotic treatment in schizophrenia—preliminary study. Isr J Psychiatry Relat Sci 52:12–15PubMed
    18.Strzelecki D, Podgorski M, Kaluzynska O, Gawlik-Kotelnicka O, Stefanczyk L, Kotlicka-Antczak M, Gmitrowicz A, Grzelak P (2015) Supplementation of antipsychotic treatment with the amino acid sarcosine influences proton magnetic resonance spectroscopy parameters in left frontal white matter in patients with schizophrenia. Nutrients 7:8767–8782CrossRef PubMed PubMedCentral
    19.Lin CY, Liang SY, Chang YC, Ting SY, Kao CL, Wu YH, Tsai GE, Lane HY (2015) Adjunctive sarcosine plus benzoate improved cognitive function in chronic schizophrenia patients with constant clinical symptoms: a randomised, double-blind, placebo-controlled trial. World J Biol Psychiatry 22:1–12CrossRef
    20.Kapoor R, Lim KS, Cheng A, Garrick T, Kapoor V (2006) Preliminary evidence for a link between schizophrenia and NMDA-glycine site receptor ligand metabolic enzymes, d -amino acid oxidase (DAAO) and kynurenine aminotransferase-1 (KAT-1). Brain Res 1106:205–210CrossRef PubMed
    21.Madeira C, Freitas ME, Vargas-Lopes C, Wolosker H, Panizzutti R (2008) Increased brain d -amino acid oxidase (DAAO) activity in schizophrenia. Schizophr Res 101:76–83CrossRef PubMed
    22.Hashimoto K, Fujita Y, Horio M, Kunitachi S, Iyo M, Ferraris D, Tsukamoto T (2009) Co-administration of a d -amino acid oxidase inhibitor potentiates the efficacy of d -serine in attenuating prepulse inhibition deficits after administration of dizocilpine. Biol Psychiatry 65:1103–1106CrossRef PubMed
    23.Matsuura A, Fujita Y, Iyo M, Hashimoto K (2015) Effects of sodium benzoate on pre-pulse inhibition deficits and hyperlocomotion in mice after administration of phencyclidine. Acta Neuropsychiatry 27:159–167CrossRef
    24.Lane HY, Lin CH, Green MF, Hellemann G, Huang CC, Chen PW, Tun R, Chang YC, Tsai GE (2013) Add-on treatment of benzoate for schizophrenia: a randomized, double-blind, placebo-controlled trial of d -amino acid oxidase inhibitor. JAMA Psychiatry 70:1267–1275CrossRef PubMed
    25.Do KQ, Cabungcal JH, Frank A, Steullet P, Cuenod M (2009) Redox dysregulation, neurodevelopment, and schizophrenia. Curr Opin Neurobiol 19:220–230CrossRef PubMed
    26.Hashimoto A, Nishikawa T, Oka T, Takahashi K, Hayashi T (1992) Determination of free amino acid enantiomers in rat brain and serum by high-performance liquid chromatography after derivatization with N-tert.-butyloxycarbonyl-l -cysteine and o-phthaldialdehyde. J Chromatogr 582:41–48CrossRef PubMed
    27.Neidle A, Dunlop DS (2002) Allosteric regulation of mouse brain serine racemase. Neurochem Res 27:1719–1724CrossRef PubMed
    28.Javitt DC, Sershen H, Hashim A, Lajtha A (2000) Inhibition of striatal dopamine release by glycine and glycyldodecylamide. Brain Res Bull 52:213–216CrossRef PubMed
    29.McNamara RK, Strawn JR (2013) Role of long-chain omega-3 fatty acids in psychiatric practice. PharmaNutrition 1:41–49CrossRef PubMed PubMedCentral
    30.Sivrioglu EY, Kirli S, Sipahioglu D, Gursoy B, Sarandol E (2007) The impact of omega-3 fatty acids, vitamins E and C supplementation on treatment outcome and side effects in schizophrenia patients treated with haloperidol: an open-label pilot study. Prog Neuropsychopharmacol Biol Psychiatry 31:1493–1499CrossRef PubMed
    31.Bentsen H, Osnes K, Refsum H, Solberg DK, Bohmer T (2013) A randomized placebo-controlled trial of an omega-3 fatty acid and vitamins E + C in schizophrenia. Transl Psychiatry 3:e335CrossRef PubMed PubMedCentral
    32.Javitt DC, Sershen H, Hashim A, Lajtha A (1997) Reversal of phencyclidine-induced hyperactivity by glycine and the glycine uptake inhibitor glycyldodecylamide. Neuropsychopharmacology 17:202–204CrossRef PubMed
    33.Javitt DC, Balla A, Burch S, Suckow R, Xie S, Sershen H (2004) Reversal of phencyclidine-induced dopaminergic dysregulation by N-methyl-d -aspartate receptor/glycine-site agonists. Neuropsychopharmacology 29:300–307CrossRef PubMed
    34.Javitt DC, Hashim A, Sershen H (2005) Modulation of striatal dopamine release by glycine transport inhibitors. Neuropsychopharmacology 30:649–656CrossRef PubMed
    35.Balla A, Schneider S, Sershen H, Javitt DC (2012) Effects of novel, high affinity glycine transport inhibitors on frontostriatal dopamine release in a rodent model of schizophrenia. Eur Neuropsychopharmacol 22:902–910CrossRef PubMed
    36.Dingledine R, Kleckner NW, McBain CJ (1990) The glycine coagonist site of the NMDA receptor. Adv Exp Med Biol 268:17–26CrossRef PubMed
    37.Reynolds IJ, Miller RJ (1990) Allosteric modulation of N-methyl-d -aspartate receptors. Adv Pharmacol 21:101–126CrossRef PubMed
    38.Fadda E, Danysz W, Wroblewski JT, Costa E (1988) Glycine and d -serine increase the affinity of N-methyl-d -aspartate sensitive glutamate binding sites in rat brain synaptic membranes. Neuropharmacology 27:1183–1185CrossRef PubMed
    39.Javitt DC (2012) Glycine transport inhibitors in the treatment of schizophrenia. Handb Exp Pharmacol 213:367–399CrossRef PubMed
    40.Harsing LG Jr, Gacsalyi I, Szabo G, Schmidt E, Sziray N, Sebban C, Tesolin-Decros B, Matyus P, Egyed A, Spedding M, Levay G (2003) The glycine transporter-1 inhibitors NFPS and Org 24461: a pharmacological study. Pharmacol Biochem Behav 74:811–825CrossRef PubMed
    41.Harsing LG Jr, Timar J, Szabo G, Udvari S, Nagy KM, Marko B, Zsilla G, Czompa A, Tapolcsanyi P, Kocsis A, Matyus P (2015) Sarcosine-based glycine transporter type-1 (GlyT-1) inhibitors containing pyridazine moiety: a further search for drugs with potential to influence schizophrenia negative symptoms. Curr Pharm Des 21:2291–2303CrossRef PubMed
    42.Umbricht D, Alberati D, Martin-Facklam M, Borroni E, Youssef EA, Ostland M, Wallace TL, Knoflach F, Dorflinger E, Wettstein JG, Bausch A, Garibaldi G, Santarelli L (2014) Effect of bitopertin, a glycine reuptake inhibitor, on negative symptoms of schizophrenia: a randomized, double-blind, proof-of-concept study. JAMA Psychiatry 71:637–646CrossRef PubMed
    43.Singer P, Dubroqua S, Yee BK (2015) Inhibition of glycine transporter 1: the yellow brick road to new schizophrenia therapy? Curr Pharm Des 21:3771–3787CrossRef PubMed
    44.Smith SM, Uslaner JM, Yao L, Mullins CM, Surles NO, Huszar SL, McNaughton CH, Pascarella DM, Kandebo M, Hinchliffe RM, Sparey T, Brandon NJ, Jones B, Venkatraman S, Young MB, Sachs N, Jacobson MA, Hutson PH (2009) The behavioral and neurochemical effects of a novel d -amino acid oxidase inhibitor compound 8 [4H-thieno [3,2-b]pyrrole-5-carboxylic acid] and d -serine. J Pharmacol Exp Ther 328:921–930CrossRef PubMed
    45.Strick CA, Li C, Scott L, Harvey B, Hajos M, Steyn SJ, Piotrowski MA, James LC, Downs JT, Rago B, Becker SL, El-Kattan A, Xu Y, Ganong AH, Tingley FD III, Ramirez AD, Seymour PA, Guanowsky V, Majchrzak MJ, Fox CB, Schmidt CJ, Duplantier AJ (2011) Modulation of NMDA receptor function by inhibition of d -amino acid oxidase in rodent brain. Neuropharmacology 61:1001–1015CrossRef PubMed
    46.Rojas C, Alt J, Ator NA, Thomas AG, Wu Y, Hin N, Wozniak K, Ferraris D, Rais R, Tsukamoto T, Slusher BS (2015) d -Amino-acid oxidase inhibition increases d -serine plasma levels in mouse but not in monkey or dog. Neuropsychopharmacology. doi:10.​1038/​npp.​2015.​319
    47.Adage T, Trillat AC, Quattropani A, Perrin D, Cavarec L, Shaw J, Guerassimenko O, Giachetti C, Greco B, Chumakov I, Halazy S, Roach A, Zaratin P (2008) In vitro and in vivo pharmacological profile of AS057278, a selective d -amino acid oxidase inhibitor with potential anti-psychotic properties. Eur Neuropsychopharmacol 18:200–214CrossRef PubMed
    48.Vecsernyes M, Fenyvesi F, Bacskay I, Deli MA, Szente L, Fenyvesi E (2014) Cyclodextrins, blood–brain barrier, and treatment of neurological diseases. Arch Med Res 45:711–729CrossRef PubMed
    49.Matsuura A, Fujita Y, Iyo M, Hashimoto K (2015) Effects of sodium benzoate on pre-pulse inhibition deficits and hyperlocomotion in mice after administration of phencyclidine. Acta Neuropsychiatry 27:159–167CrossRef
    50.Palekar AG, Kalbag SS (1991) Amino acids in the rat liver and plasma and some metabolites in the liver after sodium benzoate treatment. Biochem Med Metab Biol 46:52–58CrossRef PubMed
    51.de Vries A, Alexander B, Quamo Y (1948) Studies on amino acid metabolism. III. Plasma glycine concentration and hippuric acid formation following the ingestion of benzoate. J Clin Invest 27:665–668CrossRef PubMed PubMedCentral
    52.Lennerz BS, Vafai SB, Delaney NF, Clish CB, Deik AA, Pierce KA, Ludwig DS, Mootha VK (2015) Effects of sodium benzoate, a widely used food preservative, on glucose homeostasis and metabolic profiles in humans. Mol Genet Metab 114:73–79CrossRef PubMed PubMedCentral
    53.Javitt DC, Duncan L, Balla A, Sershen H (2005) Inhibition of system A-mediated glycine transport in cortical synaptosomes by therapeutic concentrations of clozapine: implications for mechanisms of action. Mol Psychiatry 10:275–287CrossRef PubMed
    54.Neeman G, Blanaru M, Bloch B, Kremer I, Ermilov M, Javitt DC, Heresco-Levy U (2005) Relation of plasma glycine, serine, and homocysteine levels to schizophrenia symptoms and medication type. Am J Psychiatry 162:1738–1740CrossRef PubMed
    55.Sumiyoshi T, Anil AE, Jin D, Jayathilake K, Lee M, Meltzer HY (2004) Plasma glycine and serine levels in schizophrenia compared to normal controls and major depression: relation to negative symptoms. Int J Neuropsychopharmacol 7:1–8CrossRef PubMed
    56.Sumiyoshi T, Jin D, Jayathilake K, Lee M, Meltzer HY (2005) Prediction of the ability of clozapine to treat negative symptoms from plasma glycine and serine levels in schizophrenia. Int J Neuropsychopharmacol 8:451–455CrossRef PubMed
    57.Bennett S, Gronier B (2005) Modulation of striatal dopamine release in vitro by agonists of the glycine B site of NMDA receptors; interaction with antipsychotics. Eur J Pharmacol 527:52–59CrossRef PubMed
    58.Balla A, Nattini ME, Sershen H, Lajtha A, Dunlop DS, Javitt DC (2009) GABAB/NMDA receptor interaction in the regulation of extracellular dopamine levels in rodent prefrontal cortex and striatum. Neuropharmacology 56:915–921CrossRef PubMed PubMedCentral
    59.Pawelczyk T, Grancow M, Kotlicka-Antczak M, Trafalska E, Gebski P, Szemraj J, Zurner N, Pawelczyk A (2015) Omega-3 fatty acids in first-episode schizophrenia—a randomized controlled study of efficacy and relapse prevention (OFFER): rationale, design, and methods. BMC Psychiatry 15:97CrossRef PubMed PubMedCentral
    60.Nishikawa M, Kimura S, Akaike N (1994) Facilitatory effect of docosahexaenoic acid on N-methyl-d -aspartate response in pyramidal neurones of rat cerebral cortex. J Physiol 475:83–93CrossRef PubMed PubMedCentral
    61.Sershen H, Debler EA, Lajtha A (1987) Effect of ascorbic acid on the synaptosomal uptake of [3H]MPP+, [3H]dopamine, and [14C]GABA. J Neurosci Res 17:298–301CrossRef PubMed
    62.Debler EA, Hashim A, Lajtha A, Sershen H (1988) Ascorbic acid and striatal transport of [3H] 1-methyl-4-phenylpyridine (MPP+) and [3H] dopamine. Life Sci 42:2553–2559CrossRef PubMed
    63.Debler EA, Sershen H, Hashim A, Lajtha A, Reith ME (1991) Carrier-mediated efflux of [3H]dopamine and [3H]1-methyl-4-phenylpyridine: effect of ascorbic acid. Synapse 7:99–105CrossRef PubMed
    64.Sandstrom MI, Rebec GV (2007) Extracellular ascorbate modulates glutamate dynamics: role of behavioral activation. BMC Neurosci 8:32CrossRef PubMed PubMedCentral
    65.Majewska MD, Bell JA, London ED (1990) Regulation of the NMDA receptor by redox phenomena: inhibitory role of ascorbate. Brain Res 537:328–332CrossRef PubMed
    66.Rebec GV, Pierce RC (1994) A vitamin as neuromodulator: ascorbate release into the extracellular fluid of the brain regulates dopaminergic and glutamatergic transmission. Prog Neurobiol 43:537–565CrossRef PubMed
    67.Javitt DC, Frusciante MJ, Zukin SR (1994) Activation-related and activation-independent effects of polyamines on phencyclidine receptor binding within the N-methyl-d -aspartate receptor complex. J Pharmacol Exp Ther 270:604–613PubMed
    68.Javitt DC, Zukin SR (1989) Interaction of [3H]MK-801 with multiple states of the N-methyl-d -aspartate receptor complex of rat brain. Proc Natl Acad Sci USA 86:740–744CrossRef PubMed PubMedCentral
    69.Bokkon I, Antal I (2011) Schizophrenia: redox regulation and volume neurotransmission. Curr Neuropharmacol 9:289–300CrossRef PubMed PubMedCentral
    70.Papouin T, Ladepeche L, Ruel J, Sacchi S, Labasque M, Hanini M, Groc L, Pollegioni L, Mothet JP, Oliet SH (2012) Synaptic and extrasynaptic NMDA receptors are gated by different endogenous coagonists. Cell 150:633–646CrossRef PubMed
    71.Smith SM, Uslaner JM, Hutson PH (2010) The therapeutic potential of d -amino acid oxidase (DAAO) inhibitors. Open Med Chem J 4:3–9CrossRef PubMed PubMedCentral
  • 作者单位:Henry Sershen (1) (2)
    Audrey Hashim (1)
    David S. Dunlop (1)
    Raymond F. Suckow (1) (3)
    Tom B. Cooper (1) (3)
    Daniel C. Javitt (1) (4)

    1. Nathan S. Kline Institute for Psychiatric Research, 140 Old Orangeburg Rd., Orangeburg, NY, 10962, USA
    2. NYU Langone Medical Center, Department of Psychiatry, New York, NY, 10016, USA
    3. New York State Psychiatric Institute, 1051 Riverside Dr., New York, NY, 10032, USA
    4. Columbia University College of Physicians and Surgeons, New York, NY, 10032, USA
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Biomedicine
    Neurosciences
    Biochemistry
    Neurology
  • 出版者:Springer Netherlands
  • ISSN:1573-6903
文摘
Deficits in N-methyl-d-aspartate receptor (NMDAR) function are increasingly linked to persistent negative symptoms and cognitive deficits in schizophrenia. Accordingly, clinical studies have been targeting the modulatory site of the NMDA receptor, based on the decreased function of NMDA receptor, to see whether increasing NMDA function can potentially help treat the negative and cognitive deficits seen in the disease. Glycine and d-serine are endogenous ligands to the NMDA modulatory site, but since high doses are needed to affect brain levels, related compounds are being developed, for example glycine transport (GlyT) inhibitors to potentially elevate brain glycine or targeting enzymes, such as d-amino acid oxidase (DAAO) to slow the breakdown and increase the brain level of d-serine. In the present study we further evaluated the effect of DAAO inhibitors 5-chloro-benzo[d]isoxazol-3-ol (CBIO) and sodium benzoate (NaB) in a phencyclidine (PCP) rodent mouse model to see if the inhibitors affect PCP-induced locomotor activity, alter brain d-serine level, and thereby potentially enhance d-serine responses. d-Serine dose-dependently reduced the PCP-induced locomotor activity at doses above 1000 mg/kg. Acute CBIO (30 mg/kg) did not affect PCP-induced locomotor activity, but appeared to reduce locomotor activity when given with d-serine (600 mg/kg); a dose that by itself did not have an effect. However, the effect was also present when the vehicle (Trappsol®) was tested with d-serine, suggesting that the reduction in locomotor activity was not related to DAAO inhibition, but possibly reflected enhanced bioavailability of d-serine across the blood brain barrier related to the vehicle. With this acute dose of CBIO, d-serine level in brain and plasma were not increased. Another weaker DAAO inhibitor NaB (400 mg/kg), and NaB plus d-serine also significantly reduced PCP-induced locomotor activity, but without affecting plasma or brain d-serine level, arguing against a DAAO-mediated effect. However, NaB reduced plasma l-serine and based on reports that NaB also elevates various plasma metabolites, for example aminoisobutyric acid (AIB), a potential effect via the System A amino acid carrier may be involved in the regulation of synaptic glycine level to modulate NMDAR function needs to be investigated. Acute ascorbic acid (300 mg/kg) also inhibited PCP-induced locomotor activity, which was further attenuated in the presence of d-serine (600 mg/kg). Ascorbic acid may have an action at the dopamine membrane carrier and/or altering redox mechanisms that modulate NMDARs, but this needs to be further investigated. The findings support an effect of d-serine on PCP-induced hyperactivity. They also offer suggestions on an interaction of NaB via an unknown mechanism, other than DAAO inhibition, perhaps through metabolomic changes, and find unexpected synergy between d-serine and ascorbic acid that supports combined NMDA glycine- and redox-site intervention. Although mechanisms of these specific agents need to be determined, overall it supports continued glutamatergic drug development.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700