用户名: 密码: 验证码:
Rock slope response to strong earthquake shaking
详细信息    查看全文
文摘
The 2010–2011 Canterbury earthquakes triggered many mass movements in the Port Hills including rockfalls, debris avalanches, slides and slumps, and associated cliff-top cracking. The most abundant mass movements with the highest risk to people and buildings were rockfalls and debris avalanches sourced from up to 100 m high cliffs inclined at angles >65°. Cliffs lower than 10 m in height generally remained stable during the strong shaking, with only isolated release of a few individual boulders. We used site-specific data to investigate the factors that controlled the response of the cliffs to the main earthquakes of the Canterbury sequence, adopting two-dimensional finite element seismic site response and stability modeling that was calibrated using the field observations and measurements. Observations from the assessed cliffs in response to the earthquakes show the taller cliffs experienced larger amounts of permanent cliff-top displacement and produced larger volumes of debris than the smaller cliffs. Results indicated a mean KMAX amplification ratio for all sites under study of 1.6 (range of 1.1–3.8). Field data and numerical modeling results, however, show that amplification of shaking does not necessarily increase linearly with increasing cliff height. Instead, our results show that accelerations are amplified mainly due to the impedance contrasts between the geological materials, corresponding to where strong differences in rock mass shear wave velocity exist. The resulting acceleration contrasts and rock mass strength control cliff stability. However, the amount of permanent slope displacement and volume of debris leaving the cliffs varied between the sites, due to site-specific geometry and rock mass strength.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700