用户名: 密码: 验证码:
A comparison of seasonal foliar chlorophyll change among ecotypes and cultivars of Andropogon gerardii (Poaceae) by using nondestructive and destructive methods
详细信息    查看全文
  • 作者:K. L. Caudle (1)
    L. C. Johnson (2)
    S. G. Baer (3)
    B. R. Maricle (1)
  • 关键词:drought ; grassland ; populations ; pigments ; prairie ; precipitation gradient ; sand bluestem ; tallgrass prairie
  • 刊名:Photosynthetica
  • 出版年:2014
  • 出版时间:December 2014
  • 年:2014
  • 卷:52
  • 期:4
  • 页码:511-518
  • 全文大小:996 KB
  • 参考文献:1. Alderson, J., Sharp, W.C.: Grass Varieties in the United States. United States Department of Agriculture (USDA). Pp. 296. CRC Press, Boca Raton, 1995.
    2. Anand, M.H., Byju, G.: Chlorophyll meter and leaf colour chart to estimate chlorophyll content, leaf colour, and yield of cassava. 鈥?Photosynthetica 46: 511鈥?16, 2008. CrossRef
    3. Arnon, D.I.: Copper enzymes in isolated chloroplasts. Polyphenoloxidase in / Beta vulgaris. 鈥?Plant Physiol. 24: 1鈥?5, 1949. CrossRef
    4. Ashraf, M., Ahmad, A., McNeilly, T.: Growth and photosynthetic characteristics in pearl millet under water stress and different potassium supply. 鈥?Photosynthetica 39: 389鈥?94, 2001. CrossRef
    5. Baerlocher, M.O., Campbell, D.A., Ireland, R.J.: Developmental progression of photosystem II electron transport and CO2 uptake in / Spartina alterniflora, a facultative halophyte, in a northern salt marsh. 鈥?Can. J. Bot. 82: 365鈥?75, 2004. CrossRef
    6. Chang, S.X., Robison, D.J.: Nondestructive and rapid estimation of hardwood foliar nitrogen status using the SPAD-502 chlorophyll meter. 鈥?Forest Ecol. Manag. 181: 331鈥?38, 2003. CrossRef
    7. da Silva, J.M., Arraba莽a, M.C.: Photosynthesis in the waterstressed C4 grass / Setaria sphacelata is mainly limited by stomata with both rapidly and slowly imposed water deficits. 鈥?Physiol. Plantarum 121: 409鈥?20, 2004. CrossRef
    8. Estill, K., Delaney, R.H., Smith, W.K., Ditterline, R.L.: Water relations and productivity of alfalfa leaf chlorophyll variants. 鈥?Crop Sci. 31: 1229鈥?233, 1991. CrossRef
    9. Garc铆a, A.L., Torrecillas, A., Le贸n, A., Ruiz-S谩nchez, M.C.: Biochemical indicators of the water stress in maize seedlings. 鈥?Biol. Plantarum 29: 45鈥?8, 1987. CrossRef
    10. Ghorbanli, M., Gafarabad, M., Amirkian, T., Mamaghani, B.A.: Investigation of proline, total protein, chlorophyll, ascorbate and dehydroascorbate changes under drought stress in Akria and Mobil tomato cultivars. 鈥?Iran. J. Plant Physiol. 3: 651鈥?58, 2012.
    11. Gitelson, A.A., Gritz, Y., Merzlyak, M.N.: Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves. 鈥?J. Plant Physiol. 160: 271鈥?82, 2003. CrossRef
    12. Givnish, T.J.: Adaptation to sun and shade: A whole-plant perspective. 鈥?Aust. J. Plant Physiol. 15: 63鈥?2, 1988. CrossRef
    13. Goad, R.K.: Response of regional sources of tallgrass prairie species to variation in climate and soil microbial communities. M.S. Thesis, Department of Plant Biology, Southern Illinois University, Carbondale, IL, 2011.
    14. Gray, M.M., St. Amand, P., Akhunov, E.D. / et al.: Ecotypes of an ecologically dominant grass ( / Andropogon gerardii) exhibit genetic divergence across the U.S. Midwest environmental gradient. 鈥?Mol. Ecol., in press.
    15. Hawkins, T.S., Gardiner, E.S., Comer, G.S.: Modeling the relationship between extractable chlorophyll and SPAD-502 readings for endangered plant species research. 鈥?J. Nat. Conserv. 17: 123鈥?27, 2009. CrossRef
    16. Huang, B., Duncan, R.R., Carrow, R.N.: Drought-resistance mechanisms of seven warm-season turfgrasses under surface soil drying: I. Shoot response. 鈥?Crop Sci. 37: 1858鈥?863, 1997. CrossRef
    17. Ishida, A., Toma, T., Matsumoto, Y. / et al.: Diurnal changes in leaf gas exchange characteristics in the uppermost canopy of a rain forest tree, / Dryobalanops aromatica Gaertn. f. 鈥?Tree Physiol. 16: 779鈥?85, 1996. CrossRef
    18. Kholov谩, J., Hash, C.T., Kocov谩, M., Vadez, V.: Does a terminal drought tolerance QTL contribute to differences in ROS scavenging enzymes and photosynthetic pigments in pearl millet exposed to drought? 鈥?Environ. Exp. Bot. 71: 99鈥?06, 2011. CrossRef
    19. Knapp, A.K., Gilliam, F.S.: Response of / Andropogon gerardii (Poaceae) to fire-induced high vs. low irradiance environments in tallgrass prairie: Leaf structure and photosynthetic pigments. 鈥?Amer. J. Bot. 72: 1668鈥?671, 1985. CrossRef
    20. Kumagai, E., Araki, T., Kubota, F.: Correlation of chlorophyll meter readings with gas exchange and chlorophyll fluorescence in flag leaves of rice ( / Oryza sativa L.) plants. 鈥?Plant. Prod. Sci. 12: 50鈥?3, 2009. CrossRef
    21. Lin, F.F., Qiu, L.F., Deng, J.S. / et al.: Investigation of SPAD meter-based indices for estimating rice nitrogen status. 鈥?Comput. Electron. Agr. 71: S60鈥揝65, 2010. CrossRef
    22. Ling, Q.H., Huang, W.H., Jarvis, P.: Use of a SPAD-502 meter to measure leaf chlorophyll concentration in / Arabidopsis thaliana. 鈥?Photosynth. Res. 107: 209鈥?14, 2011. CrossRef
    23. Lowry, D.B.: Ecotypes and the controversy over stages in the formation of new species. 鈥?Biol. J. Linn. Soc. 106: 241鈥?57, 2012. CrossRef
    24. Maricle, B.R.: Changes in chlorophyll content and antioxidant capacity during dark to light transitions in etiolated seedlings: Comparisons of species and units of enzyme activity. 鈥?Trans. Kansas Acad. Sci. 113: 177鈥?90, 2010. CrossRef
    25. Markwell, J., Osterman, J.C., Mitchell, J.L.: Calibration of the Minolta SPAD-502 leaf chlorophyll meter. 鈥?Photosynth. Res. 46: 467鈥?72, 1995. CrossRef
    26. McMillan, C.: The role of ecotypic variation in the distribution of the central grassland of North America. 鈥?Ecol. Monogr. 29: 285鈥?08, 1959. CrossRef
    27. Mendola, M. L.: Regional-climate and local-microbial controls on ecosystem processes during grassland restoration. M.S. Thesis, Department of Plant Biology, Southern Illinois University, Carbondale, IL, 2013.
    28. Mielke, M.S., Schaffer, B., Li, C.: Use of a SPAD meter to estimate chlorophyll content in / Eugenia uniflora L. leaves as affected by contrasting light environments and soil flooding. 鈥?Photosynthetica 48: 332鈥?38, 2010. CrossRef
    29. Monje, O.A., Bugbee, B.: Inherent limitations of nondestructive chlorophyll meters: a comparison of two types of meters. 鈥?HortScience 27: 69鈥?1, 1992.
    30. Morash, A.J., Campbell, D.A., Ireland, R.J.: Macromolecular dynamics of the photosynthetic system over a seasonal developmental progression in / Spartina alterniflora. 鈥?Can. J. Bot. 85: 476鈥?83, 2007. CrossRef
    31. Mulholland, B.J., Craigon, J., Black, C.R. / et al.: Impact of elevated atmospheric CO2 and O3 on gas exchange and chlorophyll content in spring wheat ( / Triticum aestivum L.). 鈥?J. Exp. Bot. 48: 1853鈥?863, 1997. CrossRef
    32. Nayyar, H., Gupta, D.: Differential sensitivity of C3 and C4 plants to water deficit stress: Association with oxidative stress and antioxidants. 鈥?Environ. Exp. Bot. 58: 106鈥?13, 2006. CrossRef
    33. Netto, A.T., Campostrini, E., de Oliveira, J.G., Yamanishi, O.K.: Portable chlorophyll meter for the quantification of photosynthetic pigments, nitrogen and the possible use for assessment of the photochemical process in / Carica papaya L. 鈥?Braz. J. Plant Physiol. 14: 203鈥?10, 2002. CrossRef
    34. Netto, A.T., Campostrini, E., de Oliveira, J.G., Bressan-Smith, R.E.: Photosynthetic pigments, nitrogen, chlorophyll / a fluorescence and SPAD-502 readings in coffee leaves. 鈥?Sci. Hortic.-Amsterdam 104: 199鈥?09, 2005. CrossRef
    35. Olsen, J.T.: Gas exchange and leaf anatomy of / Andropogon gerardii ecotypes over a climatic gradient of the Great Plains. M.S. Thesis, Department of Biological Sciences, Fort Hays State University. Hays, KS, 2012.
    36. Olsen, J.T., Caudle, K.L., Johnson, L.C. / et al.: Environmental and genetic variation in leaf anatomy among populations of / Andropogon gerardii (Poaceae) along a precipitation gradient. 鈥?Am. J. Bot. 100: 1957鈥?968, 2013. CrossRef
    37. Papasavvas, A., Triantafyllidis, V., Zervoudakis, G. / et al.: Correlation of SPAD-502 meter readings with physiological parameters and leaf nitrate content in / Beta vulgaris. 鈥?J. Environ. Prot. Ecol. 9: 351鈥?56, 2008.
    38. Parida, A.K., Dagaonkar, V.S., Phalak, M.S., Umalkar, G.V., Aurangabadkar, L.P.: Alterations in photosynthetic pigments, protein and osmotic components in cotton genotypes subjected to short-term drought stress followed by recovery. 鈥?Plant Biotechnol. Rep. 1: 37鈥?8, 2007. CrossRef
    39. Rahbarian, R., Khavari-Nejad, R., Ganjeali, A. / et al.: Drought stress effects on photosynthesis, chlorophyll fluorescence and water relations in tolerant and susceptible chickpea ( / Cicer arietinum L.) genotypes. 鈥?Acta Biol. Cracov. Bot. 53: 47鈥?6, 2011.
    40. Riaz, A., Younis, A., Hameed, M., Kiran, S.: Morphological and biochemical responses of turf grasses to water deficit conditions. 鈥?Pak. J. Bot. 42: 3441鈥?448, 2010.
    41. Sayed, O.H.: Chlorophyll fluorescence as a tool in cereal crop research. 鈥?Photosynthetica 41: 321鈥?30, 2003. CrossRef
    42. Shahbaz, M., Iqbal, M., Ashraf, M.: Response of differently adapted populations of blue panic grass ( / Panicum antidotale Retz.) to water deficit conditions. 鈥?J. Appl. Bot. Food Qual. 84: 134鈥?41, 2011.
    43. Shelton, J.: Epicuticular wax chemistry, morphology, and physiology in sand bluestem, / Andropogon gerardii ssp. / hallii, and big bluestem, / Andropogon gerardii ssp. / gerardii. M.S. Thesis, Division of Biology, Kansas State University. Manhattan, KS, 2012.
    44. Soares-Cordeiro, A.S., Driscoll, S.P., Arrabaca, M.C., Foyer, C.H.: Dorsoventral variations in dark chilling effects on photosynthesis and stomatal function in / Paspalum dilatatum leaves. 鈥?J. Exp. Bot. 62: 687鈥?99, 2010. CrossRef
    45. Taylor, S.H., Ripley, B.S., Woodward, F.I., Osborne, C.P.: Drought limitation of photosynthesis differs between C3 and C4 grass species in a comparative experiment. 鈥?Plant Cell Environ. 34: 65鈥?5, 2011. CrossRef
    46. Uddling, J., Gelang-Alfredsson, J., Piikki, K., Pleijel, H.: Evaluating the relationship between leaf chlorophyll concentration and SPAD-502 chlorophyll meter readings. 鈥?Photosynth. Res. 91: 37鈥?6, 2007. CrossRef
    47. Wintermans, J.F.G.M., De Mots, A.: Spectrophotometric characteristics of chlorophylls / a and / b and their pheophytins in ethanol. 鈥?Biochim. Biophys. Acta 109: 448鈥?53, 1965. CrossRef
    48. Zhu, X.Y., Wang, S.M., Zhang, C.L.: Composition and characteristic differences in photosynthetic membranes of two ecotypes of reed ( / Phragmites communis L.) from different habitats. 鈥?Photosynthetica 41: 97鈥?04, 2003. CrossRef
  • 作者单位:K. L. Caudle (1)
    L. C. Johnson (2)
    S. G. Baer (3)
    B. R. Maricle (1)

    1. Department of Biological Sciences, Fort Hays State University, 600 Park Street, Hays, KS, 67601-4099, USA
    2. Division of Biology, Kansas State University, 116 Ackert Hall, Manhattan, KS, 66506-4901, USA
    3. Department of Plant Biology and Center for Ecology, Southern Illinois University, 1025 Lincoln Dr., Life Science II, Rm. 420, MC 6509, Carbondale, IL, 62901-6509, USA
  • ISSN:1573-9058
文摘
Leaf chlorophyll (Chl) concentration can be an indicator of plant health, including photosynthetic potential and nutrient status. In some cases, this measure can indicate the degree to which plants are water-stressed. Traditional methods of measuring Chl concentration have involved a destructive sampling technique: extraction and spectrophotometric analysis. A compatible nondestructive method to measure leaf Chl concentration exists and applies transmittance spectroscopy to plants with a Minolta SPAD-502 meter. These techniques were evaluated by comparing leaf Chl concentration in big bluestem (Andropogon gerardii). Leaves were sampled from plants representing three ecotypes (originating from Central Kansas, Eastern Kansas, and Illinois, USA) and two cultivars of A. gerardii growing in Hays, Kansas, USA. Leaf Chl concentration was measured using nondestructive and destructive techniques. We documented a saturating relationship between destructively measured leaf Chl concentration and SPAD index resulting from a decelerating change in SPAD index as Chl concentration increased. The comparison of A. gerardii ecotypes and cultivars demonstrated highest Chl concentration in the ecotype and cultivar from areas with historically low precipitation, Central Kansas and A. gerardii var. hallii, respectively. A high ratio of Chl a to Chl b is an index of drought adaptation and was also manifested in A. gerardii from drier regions. Thus, drought-adapted ecotypes and cultivars might be able to maintain high photosynthetic productivity and protect photosystem II during dry periods. Conversely, the ecotypes and cultivar originating from areas with higher precipitation had lower leaf Chl and a lower Chl a/b ratio.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700