用户名: 密码: 验证码:
Transcriptome analysis reveals long noncoding RNAs involved in fiber development in cotton (Gossypium arboreum)
详细信息    查看全文
  • 作者:Changsong Zou ; Qiaolian Wang ; Cairui Lu ; Wencui Yang…
  • 关键词:long noncoding RNAs ; strand specific RNA sequencing ; fiber ; transcriptome ; expression
  • 刊名:Science China Life Sciences
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:59
  • 期:2
  • 页码:164-171
  • 全文大小:1,089 KB
  • 参考文献:Amor, B.B., Wirth, S., Merchan, F., Laporte, P., d’ Aubenton-Carafa, Y., Hirsch, J., Maizel, A., Mallory, A., Lucas, A., and Deragon, J.M. (2009). Novel long non-protein coding RNAs involved in Arabidopsis differentiation and stress responses. Genome Res 19, 57–69.PubMedCentral CrossRef PubMed
    Bonasio, R., and Shiekhattar, R. (2014). Regulation of transcription by long noncoding RNAs. Annu Rev Genet 48, 433.PubMedCentral CrossRef PubMed
    Cabili, M.N., Trapnell, C., Goff, L., Koziol, M., Tazon-Vega, B., Regev, A., and Rinn, J.L. (2011). Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses. Genes Dev 25, 1915–1927.PubMedCentral CrossRef PubMed
    Cao, X. (2015). Whole genome sequencing of cotton—a new chapter in cotton genomics. Sci China Life Sci 58, 515–516.CrossRef PubMed
    Chen, Z. (2007). Genetic and epigenetic mechanisms for gene expression and phenotypic variation in plant polyploids. Annu Rev Plant Biol 58, 377.PubMedCentral CrossRef PubMed
    Chen, Z., Scheffler, B.E., Dennis, E., Triplett, B.A., Zhang, T., Guo, W., Chen, X., Stelly, D.M., Rabinowicz, P.D., and Town, C.D. (2007). Toward sequencing cotton (Gossypium) genomes. Plant Physiol 145, 1303–1310.PubMedCentral CrossRef PubMed
    Derrien, T., Johnson, R., Bussotti, G., Tanzer, A., Djebali, S., Tilgner, H., Guernec, G., Martin, D., Merkel, A., and Knowles, D.G. (2012). The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression. Genome Res 22, 1775–1789.PubMedCentral CrossRef PubMed
    Ding, J., Lu, Q., Ouyang, Y., Mao, H., Zhang, P., Yao, J., Xu, C., Li, X., Xiao, J., and Zhang, Q. (2012). A long noncoding RNA regulates photoperiod-sensitive male sterility, an essential component of hybrid rice. Proc Natl Acad Sci USA 109, 2654–2659.PubMedCentral CrossRef PubMed
    Dong, Z., and Chen, Y. (2013). Transcriptomics: advances and approaches. Sci China Life Sci 56, 960–967.CrossRef PubMed
    Eddy, S.R. (2009). A new generation of homology search tools based on probabilistic inference. Genome informatics. International Conference on Genome Informatics. 205–211.
    Fabbri, M., and Calin, G.A. (2010). Beyond genomics: interpreting the 93% of the human genome that does not encode proteins. Curr Opin Drug Discov Dev 13, 350–358.
    Fedoroff, N.V. (2012). Transposable elements, epigenetics, and genome evolution. Science 338, 758–767.CrossRef PubMed
    Gong, L., Kakrana, A., Arikit, S., Meyers, B.C., and Wendel, J.F. (2013). Composition and expression of conserved microRNA genes in diploid cotton (Gossypium) species. Genome Biol Evol 5, 2449–2459.PubMedCentral CrossRef PubMed
    Guan, X., and Chen, Z. (2013). Cotton fiber genomics. Seed Genomics, 203–216.CrossRef
    Guan, X., Pang, M., Nah, G., Shi, X., Ye, W., Stelly, D.M., and Chen, Z. (2014). miR828 and miR858 regulate homoeologous MYB2 gene functions in Arabidopsis trichome and cotton fibre development. Nat Commun doi: 10.1038/ncomms4050
    Guttman, M., Amit, I., Garber, M., French, C., Lin, M.F., Feldser, D., Huarte, M., Zuk, O., Carey, B.W., and Cassady, J.P. (2009). Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals. Nature 458, 223–227.PubMedCentral CrossRef PubMed
    Hawkins, J.S., Kim, H., Nason, J.D., Wing, R.A., and Wendel, J.F. (2006). Differential lineage-specific amplification of transposable elements is responsible for genome size variation in Gossypium. Genome Res 16, 1252–1261.PubMedCentral CrossRef PubMed
    Hendrix, B., and Stewart, J.M. (2005). Estimation of the nuclear DNA content of Gossypium species. Ann Bot 95, 789–797.PubMedCentral CrossRef PubMed
    Heo, J.B., and Sung, S. (2011). Vernalization-mediated epigenetic silencing by a long intronic noncoding RNA. Science 331, 76–79.CrossRef PubMed
    Kim, D., Pertea, G., Trapnell, C., Pimentel, H., Kelley, R., and Salzberg, S.L. (2013). TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol 14, R36.PubMedCentral CrossRef PubMed
    Kong, L., Zhang, Y., Ye, Z., Liu, X., Zhao, S., Wei, L., and Gao, G. (2007). CPC: assess the protein-coding potential of transcripts using sequence features and support vector machine. Nucleic Acids Res 35, W345–W349.PubMedCentral CrossRef PubMed
    Li, F., Fan, G., Lu, C., Xiao, G., Zou, C., Kohel, R.J., Ma, Z., Shang, H., Ma, X., and Wu, J. (2015). Genome sequence of cultivated Upland cotton (Gossypium hirsutum TM-1) provides insights into genome evolution. Nat Biotechnol 33, 524–530.CrossRef PubMed
    Li, F., Fan, G., Wang, K., Sun, F., Yuan, Y., Song, G., Li, Q., Ma, Z., Lu, C., and Zou, C. (2014a). Genome sequence of the cultivated cotton Gossypium arboreum. Nat Genet 46, 567–572.CrossRef PubMed
    Li, L., Eichten, S.R., Shimizu, R., Petsch, K., Yeh, C.T., Wu, W., Chettoor, A.M., Givan, S.A., Cole, R.A., and Fowler, J.E. (2014b). Genome-wide discovery and characterization of maize long non-coding RNAs. Genome Biol 15, R40.PubMedCentral CrossRef PubMed
    Liu, J., Jung, C., Xu, J., Wang, H., Deng, S., Bernad, L., Arenas-Huertero, C., and Chua, N. H. (2012). Genome-wide analysis uncovers regulation of long intergenic noncoding RNAs in Arabidopsis. Plant Cell 24, 4333–4345.PubMedCentral CrossRef PubMed
    Necsulea, A., Soumillon, M., Warnefors, M., Liechti, A., Daish, T., Zeller, U., Baker, J.C., Gruetzner, F., and Kaessmann, H. (2014). The evolution of lncRNA repertoires and expression patterns in tetrapods. Nature 505, 635–640.CrossRef PubMed
    Pang, C. Y., Wang, H., Pang, Y., Xu, C., Jiao, Y., Qin, Y., Western, T.L., Yu, S., and Zhu, Y. (2010). Comparative proteomics indicates that biosynthesis of pectic precursors is important for cotton fiber and Arabidopsis root hair elongation. Mol Cell Proteomics 9, 2019–2033.PubMedCentral CrossRef PubMed
    Punta, M., Coggill, P.C., Eberhardt, R.Y., Mistry, J., Tate, J., Boursnell, C., Pang, N., Forslund, K., Ceric, G., and Clements, J. (2011). The Pfam protein families database: towards a more sustainable future. Nucleic Acids Res 40, D290–D301.PubMedCentral CrossRef PubMed
    Qin, Y., Hu, C., Pang, Y., Kastaniotis, A.J., Hiltunen, J.K., and Zhu, Y. (2007). Saturated very-long-chain fatty acids promote cotton fiber and Arabidopsis cell elongation by activating ethylene biosynthesis. Plant Cell 19, 3692–3704.PubMedCentral CrossRef PubMed
    Qin, Y., and Zhu, Y. (2011). How cotton fibers elongate: a tale of linear cell-growth mode. Curr Opin Plant Biol 14, 106–111.CrossRef PubMed
    Quinlan, A.R. (2014). BEDTools: The swiss-army tool for genome feature analysis. Curr Protoc Bioinformatics, doi: 10.1002/0471250953.bi1112s47.
    Rinn, J.L., and Chang, H. (2012). Genome regulation by long noncoding RNAs. Annu Rev Biochem 81, 145–166.CrossRef PubMed
    Rinn, J.L., Kertesz, M., Wang, J.K., Squazzo, S.L., Xu, X., Brugmann, S.A., Goodnough, L.H., Helms, J.A., Farnham, P.J., and Segal, E. (2007). Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell 129, 1311–1323.PubMedCentral CrossRef PubMed
    Ruiz-Orera, J., Messeguer, X., Subirana, J.A., and Alba, M.M. (2014). Long non-coding RNAs as a source of new peptides. Elife 3, e03523.CrossRef PubMed
    Shi, Y., Zhu, S., Mao, X., Feng, J., Qin, Y., Zhang, L., Cheng, J., Wei, L., Wang, Z., and Zhu, Y. (2006). Transcriptome profiling, molecular biological, and physiological studies reveal a major role for ethylene in cotton fiber cell elongation. Plant Cell 18, 651–664.PubMedCentral CrossRef PubMed
    Sunilkumar, G., Campbell, L.M., Puckhaber, L., Stipanovic, R.D., and Rathore, K.S. (2006). Engineering cottonseed for use in human nutrition by tissue-specific reduction of toxic gossypol. Proc Natl Acad Sci USA 103, 18054–18059.PubMedCentral CrossRef PubMed
    Trapnell, C., Hendrickson, D.G., Sauvageau, M., Goff, L., Rinn, J.L., and Pachter, L. (2013). Differential analysis of gene regulation at transcript resolution with RNA-seq. Nat Biotechnol 31, 46–53.CrossRef PubMed
    Ulitsky, I., Shkumatava, A., Jan, C.H., Sive, H., and Bartel, D.P. (2011). Conserved function of lincRNAs in vertebrate embryonic development despite rapid sequence evolution. Cell 147, 1537–1550.PubMedCentral CrossRef PubMed
    Umlauf, D., Goto, Y., Cao, R., Cerqueira, F., Wagschal, A., Zhang, Y., and Feil, R. (2004). Imprinting along the Kcnq1 domain on mouse chromosome 7 involves repressive histone methylation and recruitment of Polycomb group complexes. Nat Genet 36, 1296–1300.CrossRef PubMed
    Walford, S.A., Wu, Y., Llewellyn, D.J., and Dennis, E.S. (2011). GhMYB25-like: a key factor in early cotton fibre development. Plant J 65, 785–797.CrossRef PubMed
    Wang, K., Wang, Z., Li, F., Ye, W., Wang, J., Song, G., Yue, Z., Cong, L., Shang, H., and Zhu, S. (2012). The draft genome of a diploid cotton Gossypium raimondii. Nat Genet 44, 1098–1103.CrossRef PubMed
    Wang, M., Yuan, D., Tu, L., Gao, W., He, Y., Hu, H., Wang, P., Liu, N., Lindsey, K., and Zhang, X. (2015). Long noncoding RNAs and their proposed functions in fibre development of cotton (Gossypium spp.). New Phytol 207, 1181–1197CrossRef PubMed
    Wei, M., Wei, H., Wu, M., Song, M., Zhang, J., Yu, J., Fan, S., and Yu, S. (2013). Comparative expression profiling of miRNA during anther development in genetic male sterile and wild type cotton. BMC Plant Biol 13, 66.PubMedCentral CrossRef PubMed
    Xue, W., Wang, Z., Du, M., Liu, Y., and Liu, J. (2013). Genome-wide analysis of small RNAs reveals eight fiber elongation-related and 257 novel microRNAs in elongating cotton fiber cells. BMC Genomics 14, 629.PubMedCentral CrossRef PubMed
    Yan, P. (2015). The homeodomain-containing transcription factor, Gh HOX3, is a key regulator of cotton fiber elongation. Science 3, 013.
    Zhang, Y., Liao, J., Li, Z., Yu, Y., Zhang, J., Li, Q., Qu, L., Shu, W., and Chen, Y. (2014). Genome-wide screening and functional analysis identify a large number of long noncoding RNAs involved in the sexual reproduction of rice. Genome Biol 15, 512.PubMedCentral CrossRef PubMed
    Zhang, Y., Liu, J., Jia, C., Li, T., Wu, R., Wang, J., Chen, Y., Zou, X., Chen, R., and Wang, X.-J. (2010). Systematic identification and evolutionary features of rhesus monkey small nucleolar RNAs. BMC Genomics 11, 61.PubMedCentral CrossRef PubMed
    Zhu, J., Fu, H., Wu, Y., and Zheng, X. (2013). Function of lncRNAs and approaches to lncRNA-protein interactions. Sci China Life Sci 56, 876–885.CrossRef PubMed
    Zou, C., Lu, C., Shang, H., Jing, X., Cheng, H., Zhang, Y., and Song, G. (2013). Genome-wide analysis of the Sus gene family in cotton. J Int Plant Biol 55, 643–653.CrossRef
  • 作者单位:Changsong Zou (1)
    Qiaolian Wang (1)
    Cairui Lu (1)
    Wencui Yang (1)
    Youping Zhang (1)
    Hailiang Cheng (1)
    Xiaoxu Feng (1)
    Mtawa Andrew Prosper (1)
    Guoli Song (1)

    1. State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
  • 刊物主题:Life Sciences, general;
  • 出版者:Springer Berlin Heidelberg
  • ISSN:1869-1889
文摘
Long noncoding RNAs (lncRNAs) play important roles in various biological regulatory processes in yeast, mammals, and plants. However, no systematic identification of lncRNAs has been reported in Gossypium arboreum. In this study, the strand-specific RNA sequencing (ssRNA-seq) of samples from cotton fibers and leaves was performed, and lncRNAs involved in fiber initiation and elongation processes were systematically identified and analyzed. We identified 5,996 lncRNAs, of which 3,510 and 2,486 can be classified as long intergenic noncoding RNAs (lincRNAs) and natural antisense transcripts (lncNAT), respectively. LincRNAs and lncNATs are similar in many aspects, but have some differences in exon number, exon length, and transcript length. Expression analysis revealed that 51.9% of lincRNAs and 54.5% of lncNATs transcripts were preferentially expressed at one stage of fiber development, and were significantly highly expressed than protein-coding transcripts (21.7%). During the fiber and rapid elongation stages, rapid and dynamic changes in lncRNAs may contribute to fiber development in cotton. This work describes a set of lncRNAs that are involved in fiber development. The characterization and expression analysis of lncRNAs will facilitate future studies on their roles in fiber development in cotton. Keywords long noncoding RNAs strand specific RNA sequencing fiber transcriptome expression

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700