用户名: 密码: 验证码:
Practice makes transfer of motor skills imperfect
详细信息    查看全文
  • 作者:Arnaud Boutin (1)
    Arnaud Badets (1)
    Robin N. Salesse (1)
    Udo Fries (2)
    Stefan Panzer (3)
    Yannick Blandin (1) Yannick.Blandin@mshs.univ-poitiers.fr
  • 刊名:Psychological Research
  • 出版年:2012
  • 出版时间:September 2012
  • 年:2012
  • 卷:76
  • 期:5
  • 页码:611-625
  • 全文大小:350.7 KB
  • 参考文献:1. Albouy, G., Sterpenich, V., Balteau, E., Vandewalle, G., Desseilles, M., Dang-Vu, T., et al. (2008). Both the hippocampus and striatum are involved in consolidation of motor sequence memory. Neuron, 58, 261–272.
    2. Bapi, R. S., Doya, K., & Harner, A. M. (2000). Evidence for effector independent and dependent representations and their differential time course of acquisition during motor sequence learning. Experimental Brain Research, 132, 149–162.
    3. Boutin, A., Fries, U., Panzer, S., Shea, C. H., & Blandin, Y. (2010). Role of action observation and action in sequence learning and coding. Acta Psychologica, 135, 240–251.
    4. Brainard, D. H. (1997). The psychophysics toolbox. Spatial Vision, 10, 433–436.
    5. Butler, A. C. (2010). Repeated testing produces superior transfer of learning relative to repeated studying. Journal of Experimental Psychology. Learning, Memory, and Cognition, 36, 1118–1133.
    6. Carpenter, S. K. (2009). Cue strength as a moderator of the testing effect: The benefits of elaborative retrieval. Journal of Experimental Psychology. Learning, Memory, and Cognition, 35, 1563–1569.
    7. Censor, N., Dimyan, M. A., & Cohen, L. G. (2010). Modification of existing human motor memories is enabled by primary cortical processing during memory reactivation. Current Biology, 20, 1545–1649.
    8. Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Hilsdale, Nj: Erlbaum.
    9. Cohen, D. A., Pascual-Leone, A., Press, D. Z., & Robertson, E. M. (2005). Off-line learning of motor skill memory: a double dissociation of goal and movement. Proceedings of the National Academy of Sciences of the United States of America, 102, 18237–18241.
    10. Colby, C. L., & Goldberg, M. E. (1999). Space and attention in parietal cortex. Annual Review of Neuroscience, 22, 319–349.
    11. Criscimagna-Hemminger, S. E., Donchin, O., Gazzaniga, M. S., & Shadmehr, R. (2003). Learned dynamics of reaching movements generalize from dominant to nondominant arm. Journal of Neurophysiology, 89, 168–176.
    12. Diekelmann, S., & Born, J. (2010). The memory function of sleep. Nature Reviews Neuroscience, 11, 114–126.
    13. Doyon, J., Song, A. W., Karni, A., Lalonde, F., Adams, M. M., & Ungerleider, L. G. (2002). Experience-dependent changes in cerebellar contributions to motor sequence learning. Proceedings of the National Academy of Sciences of the United States of America, 99, 1017–1022.
    14. Dudai, Y. (2006). Reconsolidation: the advantage of being refocused. Current Opinion in Neurobiology, 16, 174–178.
    15. Dudai, Y., & Eisenberg, M. (2004). Rites of passage of the engram: reconsolidation and the lingering consolidation hypothesis. Neuron, 44, 93–100.
    16. Hikosaka, O., Nakahara, H., Rand, M. K., Sakai, K., Lu, X., Nakamura, K., et al. (1999). Parallel neural networks for learning sequential procedures. Trends in Neuroscience, 22, 464–471.
    17. Hikosaka, O., Rand, M. K., Nakamura, K., Miyachi, S., Kitaguchi, K., Sakai, K., et al. (2002). Long-term retention of motor skill in macaque monkeys and humans. Experimental Brain Research, 147, 494–504.
    18. Karni, A., Meyer, G., Jezzard, P., Adams, M. M., Turner, R., & Ungerleider, L. G. (1995). Functional MRI evidence for adult motor cortex plasticity during motor skill learning. Nature, 377, 155–158.
    19. Karni, A., Meyer, G., Rey-Hipolito, C., Jezzard, P., Adams, M. M., Turner, R., et al. (1998). The acquisition of skilled motor performance: fast and slow experience-driven changes in primary motor cortex. Proceedings of the National Academy of Sciences of the United States of America, 95, 861–868.
    20. Keele, S. W., Ivry, R., Mayr, U., Hazeltine, E., & Heuer, H. (2003). The cognitive and neural architecture of sequence representation. Psychological Review, 110, 316–339.
    21. Keele, S. W., Jennings, P., Jones, S., Caulton, D., & Cohen, A. (1995). On the modularity of sequence representation. Journal of Motor Behavior, 27, 17–30.
    22. Kleiner, M., Brainard, D., & Pelli, D. G. (2007). What’s new in Psychtoolbox-3? Perception, 36 (ECVP Abstract Supplement).
    23. Korman, M., Raz, N., Flash, T., & Karni, A. (2003). Multiple shifts in the representation of a motor sequence during the acquisition of skilled performance. Proceedings of the National Academy of Sciences of the United States of America, 100, 12492–12497.
    24. Kovacs, A. J., Boyle, J., Gruetzmatcher, N., & Shea, C. H. (2010). Coding of on-line and pre-planned movement sequences. Acta Psychologica, 133, 119–126.
    25. Kovacs, A. J., Han, D.-W., & Shea, C. H. (2009a). The representation of movement sequences is related to task characteristics. Acta Psychologica, 132, 54–61.
    26. Kovacs, A. J., Muehlbauer, T., & Shea, C. H. (2009b). The coding of movement sequences. Journal of Experimental Psychology: Human Perception and Performance, 35, 390–407.
    27. Krakauer, J. W., Ghilardi, M. F., & Ghez, C. (1999). Independent learning of internal models for kinematic and dynamic control of reaching. Nature Neuroscience, 2, 1026–1031.
    28. Krakauer, J. W., & Shadmehr, R. (2006). Consolidation of motor memory. Trends in Neurosciences, 29, 58–64.
    29. Lange, R. K., Godde, B., & Braun, C. (2004). EEG correlates of coordinate processing during intermanual transfer. Experimental Brain Research, 159, 161–171.
    30. Li, C. S. R., Padoa-Schioppa, C., & Bizzi, E. (2001). Neuronal correlates of motor performance and motor learning in the primary motor cortex of monkeys adapting to an external force field. Neuron, 30, 593–607.
    31. McDaniel, M. A., & Masson, M. E. J. (1985). Alterning memory representations through retrieval. Journal of Experimental Psychology. Learning, Memory, and Cognition, 11, 371–385.
    32. McDaniel, M. A., Roediger, H. L., I. I. I., & McDermott, K. B. (2007). Generalizing test-enhanced learning from the laboratory to the classroom. Psychonomic Bulletin & Review, 14, 200–206.
    33. McGaugh, J. L. (2000). Memory—a century of consolidation. Science, 287, 248–251.
    34. Panzer, S., Krueger, M., Muehlbauer, T., Kovacs, A. J., & Shea, C. H. (2009). Inter-manual transfer and practice: coding of simple motor sequences. Acta Psychologica, 131, 99–109.
    35. Pelli, D. G. (1997). The VideoToolbox software for visual psychophysics: transforming numbers into movies. Spatial Vision, 10, 437–442.
    36. Przybyslawski, J., & Sara, S. J. (1997). Reconsolidation of memory after its reactivation. Behavioural Brain Research, 84, 241–246.
    37. Robertson, E. M. (2009). From creation to consolidation: A novel framework for memory processing. PLoS Biology, 7, 11–19.
    38. Robertson, E. M., Pascual-Leone, A., & Miall, R. C. (2004a). Current concepts in procedural consolidation. Nature Reviews Neuroscience, 5, 576–582.
    39. Robertson, E. M., Pascual-Leone, A., & Press, D. Z. (2004b). Awareness modifies the skill-learning benefits of sleep. Current Biology, 14, 208–212.
    40. Robertson, E. M., Press, D. Z., & Pascual-Leone, A. (2005). Off-line learning and the primary motor cortex. The Journal of Neuroscience, 25, 6372–6378.
    41. Roediger, H. L., I. I. I., & Butler, A. C. (2010). The critical role of retrieval practice in long-term retention. Trends in Cognitive Sciences, 15, 20–27.
    42. Roediger, H. L., I. I. I., & Karpicke, J. D. (2006a). Test-enhanced learning: taking memory tests improves long-term retention. Psychological Science, 17, 249–255.
    43. Roediger, H. L., I. I. I., & Karpicke, J. D. (2006b). The power of testing memory: basic research and implications for educational practice. Perspectives on Psychological Science, 3, 181–210.
    44. Rohrer, D., Taylor, K., & Sholar, B. (2010). Tests enhance the transfer of learning. Journal of Experimental Psychology. Learning, Memory, and Cognition, 36, 233–239.
    45. Sainburg, R. L. (2005). Handedness: differential specializations for control of trajectory and position. Exercise and Sport Sciences Reviews, 33, 206–213.
    46. Sanes, J. N., & Donoghue, J. P. (2000). Plasticity and primary motor cortex. Annual Review of Neuroscience, 23, 393–415.
    47. Sara, S. J. (2000). Retrieval and reconsolidation: toward a neurobiology of remembering. Learning and Memory, 7, 73–84.
    48. Shadmehr, R., & Holcomb, H. H. (1997). Neural correlates of motor memory consolidation. Science, 277, 821–825.
    49. Soechting, J. F., & Flanders, M. (1989). Errors in pointing are due to approximations in sensorimotor transformations. Journal of Neurophysiology, 62, 595–608.
    50. Steele, C. J., & Penhune, V. B. (2010). Specific increases within global decreases: a functional magnetic resonance imaging investigation of five days of motor sequence learning. The Journal of Neuroscience, 30, 8332–8341.
    51. Stickgold, R., & Walker, M. P. (2007). Sleep-dependent memory consolidation and reconsolidation. Sleep Medicine, 8, 331–343.
    52. St枚ckel, T., Weigelt, M., & Krug (2011). Acquisition of a complex basketball dribbling task in school children as a function of bilateral practice order. Research Quarterly for Exercise and Sport, 82, 188–197.
    53. Trempe, M., & Proteau, L. (2010). Distinct consolidation outcomes in a visuomotor adaptation task: off-line leaning and persistent after-effect. Brain and Cognition, 73, 135–145.
    54. Ungerleider, L. G., Doyon, J., & Karni, A. (2002). Imaging brain plasticity during motor skill learning. Neurobiology of Learning and Memory, 78, 553–564.
    55. Walker, M. P., Brakefield, T., Hobson, J. A., & Stickgold, R. (2003). Dissociable stages of human memory consolidation and reconsolidation. Nature, 425, 616–620.
    56. Walker, M. P., & Stickgold, R. (2004). Sleep-dependent learning and memory consolidation. Neuron, 44, 121–133.
    57. Wang, J., & Sainburg, R. L. (2006). Interlimb transfer of visuomotor rotations depends on handedness. Experimental Brain Research, 175, 223–230.
    58. Wheeler, M. A., Ewers, M., & Buonanno, J. F. (2003). Different rates of forgetting following study versus test trials. Memory, 11, 571–580.
    59. Witt, K., Margraf, N., Bieber, C., Born, J., & Deuschl, G. (2010). Sleep consolidates the effector-independent representation of a motor skill. Neuroscience, 171, 227–234.
  • 作者单位:1. National Centre of Scientific Research, Centre de Recherches sur la Cognition et l鈥橝pprentissage, CeRCA, CNRS UMR 6234, MSHS. B芒t A5, University of Poitiers, 5, rue Th茅odore Lefebvre, 86000 Poitiers, France2. Department of Human Movement Science, University of Leipzig, Leipzig, Germany3. IfADo, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
  • ISSN:1430-2772
文摘
We investigated the practice-effects on motor skill transfer and the associated representational memory changes that occur during the within-practice and between-practice phases. In two experiments, participants produced extension–flexion movements with their dominant right arm for a limited or prolonged practice session arranged in either a single- or multi-session format. We tested the ability of participants to transfer the original pattern (extrinsic transformation) or the mirrored one (intrinsic transformation) to the non-dominant left arm, 10 min and 24 h after the practice sessions. Results showed that practice induces rapid motor skill improvements that are non-transferable irrespective of the amount of acquisition trials. Furthermore, the extrinsic component of the skill develops early and remains the dominant coding system during practice. Conversely, we found distinct between-practice memory changes: a limited practice induces an off-line development of the extrinsic component, whereas a prolonged practice session subserves the off-line development of the intrinsic component (Experiment 2). We provided further evidence that the long-term representation of the motor skill also depends on the nature of the practice session itself: the parsing of practice into multiple sessions narrows the effector-transfer capacities in comparison to a single session (Experiment 1). These findings yield theoretical and practical implications that are discussed in the context of recent motor skill learning models.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700