用户名: 密码: 验证码:
A mixed formulation for the direct approximation of?the?control of minimal \(L^2\)
详细信息    查看全文
  • 作者:Nicolae C?ndea ; Arnaud Münch
  • 关键词:Linear wave equation ; Null controllability ; Finite elements methods ; Mixed formulation ; 35L10 ; 65M12 ; 93B40
  • 刊名:Calcolo
  • 出版年:2015
  • 出版时间:September 2015
  • 年:2015
  • 卷:52
  • 期:3
  • 页码:245-288
  • 全文大小:2,187 KB
  • 参考文献:1.Asch, M., Lebeau, G.: Geometrical aspects of exact boundary controllability for the wave equation—a numerical study. ESAIM Control Optim. Calc. Var. 3, 163-12 (electronic) (1998). doi:10.-051/?cocv:-998106
    2.Bardos, C., Lebeau, G., Rauch, J.: Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary. SIAM J. Control Optim. 30(5), 1024-065 (1992). doi:10.-137/-330055
    3.Bernadou, M., Hassan, K.: Basis functions for general Hsieh–Clough–Tocher triangles, complete or reduced. Int. J. Numer. Methods Eng. 17(5), 784-89 (1981). doi:10.-002/?nme.-620170510
    4.Bourquin, F.: Approximation theory for the problem of exact controllability of the wave equation with boundary control. In: Second International Conference on Mathematical and Numerical Aspects of Wave Propagation (Newark, DE, 1993), pp. 103-12. SIAM, Philadelphia (1993)
    5.Brezzi, F., Fortin, M.: Mixed and Hybrid Finite Element Methods. Springer Series in Computational Mathematics, vol. 15. Springer, New York (1991). doi:10.-007/-78-1-4612-3172-1
    6.Castro, C.: Exact controllability of the 1-D wave equation from a moving interior point. ESAIM Control Optim. Calc. Var. 19(1), 301-16 (2013). doi:10.-051/?cocv/-012009
    7.Castro, C., C?ndea, N., Münch, A.: Controllability of the linear wave equation with moving inner actions. Preprint. http://?hal.?archives-ouvertes.?fr/?hal-00927076
    8.Castro, C., Micu, S., Münch, A.: Numerical approximation of the boundary control for the wave equation with mixed finite elements in a square. IMA J. Numer. Anal. 28(1), 186-14 (2008). doi:10.-093/?imanum/?drm012
    9.Chapelle, D., Bathe, K.J.: The inf-sup test. Comput. Struct. 47(4-), 537-45 (1993). doi:10.-016/-045-7949(93)90340-J
    10.Ciarlet, P.G.: The finite element method for elliptic problems. Classics in Applied Mathematics, vol. 40. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (2002). doi:10.-137/-.-780898719208 . Reprint of the 1978 original [North-Holland, Amsterdam; MR0520174 (58 #25001)]
    11.C?ndea, N., Fernández-Cara, E., Münch, A.: Numerical controllability of the wave equation through primal methods and carleman estimates. ESAIM Control Optim. Calc. Var. 19, 1076-108 (2013). doi:10.-051/?cocv/-013046
    12.C?ndea, N., Micu, S., Tucsnak, M.: An approximation method for exact controls of vibrating systems. SIAM J. Control Optim. 49(3), 1283-305 (2011). doi:10.-137/-9077641X
    13.Daniel, J.W.: The Approximate Minimization of Functionals. Prentice-Hall Inc., Englewood Cliffs (1971)MATH
    14.Dunavant, D.A.: High degree efficient symmetrical Gaussian quadrature rules for the triangle. Int. J. Numer. Methods Eng. 21(6), 1129-148 (1985). doi:10.-002/?nme.-620210612
    15.Ervedoza, S., Zuazua, E.: On the numerical approximation of exact controls for waves. Springer Briefs in Mathematics, vol. XVII (2013)
    16.Fernández-Cara, E., Münch, A.: Strong convergence approximations of null controls for the 1D heat equation. SeMA J. 61(1), 49-8 (2013)
    17.Fortin, M., Glowinski, R.: Augmented Lagrangian methods. Studies in Mathematics and its Applications, vol. 15. North-Holland Publishing Co., Amsterdam (1983). Applications to the numerical solution of boundary value problems. Translated from the French by B. Hunt and D. C, Spicer
    18.Glowinski, R.: Numerical methods for fluids. Part 3. Handbook of Numerical Analysis, vol. IX. North-Holland, Amsterdam (2003)
    19.Glowinski, R., Li, C.H., Lions, J.L.: A numerical approach to the exact boundary controllability of the wave equation. I. Dirichlet controls: description of the numerical methods. Jpn. J. Appl. Math. 7(1), 1-6 (1990). doi:10.-007/?BF03167891
    20.Glowinski, R., Lions, J.L.: Exact and approximate controllability for distributed parameter systems. In: Acta Numerica, pp. 159-33. Cambridge Univ. Press, Cambridge (1995)
    21.Glowinski, R., Lions, J.L., He, J.: Exact and approximate controllability for distributed parameter systems: a numerical approach. Encyclopedia of Mathematics and its Applications, vol. 117. Cambridge University Press, Cambridge (2008). doi:10.-017/?CBO9780511721595-/span>
    22.Gunzburger, M., Hou, L.S., Ju, L.: A numerical method for exact boundary controllability problems for the wave equation. Comput. Math. Appl. 51(5), 721-50 (2006). doi:10.-016/?j.?camwa.-006.-3.-03
    23.Ju, L., Gunzburger, M.D., Hou, L.S.: Approximation of exact boundary controllability problems for the 1-D wave equation by optimization-based methods. In: Recent Advances in Scientific Computing and Partial Differential Equations (Hong Kong, 2002), Contemporary Mathematics, vol. 330, pp. 133-53. American Mathematical Society, Providence (2003). doi:10.-090/?conm/-30/-5888
    24.Komornik, V.: Exact controllability and stabilization: the multiplier method. RAM: Research in Applied Mathematics. Masson, Paris (1994)
    25.Komornik, V., Loreti, P.: Observability of discretized
  • 作者单位:Nicolae C?ndea (1)
    Arnaud Münch (1)

    1. Laboratoire de Mathématiques, Université Blaise Pascal (Clermont-Ferrand 2), UMR CNRS 6620, Campus de Cézeaux, 63171?, Aubière, France
  • 刊物类别:Mathematics and Statistics
  • 刊物主题:Mathematics
    Numerical Analysis
    Theory of Computation
  • 出版者:Springer Milan
  • ISSN:1126-5434
文摘
This paper deals with the numerical computation of null controls for the wave equation with a potential. The goal is to compute approximations of controls that drive the solution from a prescribed initial state to zero at a large enough controllability time. In [C?ndea, Fernández-Cara & Münch, Numerical controllability of the wave equation through primal methods and Carleman estimates, 2013], a so called primal method is described leading to a strongly convergent approximation of boundary controls: the controls minimize quadratic weighted functionals involving both the control and the state and are obtained by solving the corresponding optimality condition. In this work, we adapt the method to approximate the control of minimal square-integrable norm. The optimality conditions of the problem are reformulated as a mixed formulation involving both the state and its adjoint. We prove the well-posedeness of the mixed formulation (in particular the inf-sup condition) then discuss several numerical experiments. The approach covers both the boundary and the inner controllability. For simplicity, we present the approach in the one dimensional case. Keywords Linear wave equation Null controllability Finite elements methods Mixed formulation

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700