用户名: 密码: 验证码:
Comparative susceptibility of peanut genetically engineered for sclerotinia blight resistance to non-target peanut pathogens
详细信息    查看全文
  • 作者:Jiahuai Hu ; Darcy E. P. Telenko ; Patrick M. Phipps…
  • 关键词:Oxalate oxidase ; Arachis hypogaea ; Transgenic peanut ; GMO ; Field trial ; Oxalic acid
  • 刊名:European Journal of Plant Pathology
  • 出版年:2016
  • 出版时间:May 2016
  • 年:2016
  • 卷:145
  • 期:1
  • 页码:177-187
  • 全文大小:333 KB
  • 参考文献:Backman, P. A., & Brenneman, T. B. (1997). Stem rot. In N. Kokalis-Burelle, D. M. Porter, R. Rodriguez-Kabana, D. H. Smith, & P. Subrahmanyam (Eds.), Compendium of peanut diseases (2nd ed., pp. 36–37). St. Paul: APS Press.
    Bateman, D. F. & Beer, S. V. (1965). Simultaneous production and synergistic action of oxalic acid and polygalacturonase during pathogenesis of Sclerotium rolfsii. Phytopathology, 55, 204–211.
    Beute, M. K., Porter, D. M., & Hadley, B. A. (1975). Sclerotinia blight of peanut in North Carolina and Virginia and its chemical control. Plant Disease Reporter, 59, 697–701.
    Cessna, S. G., Sears, V. E., Dickman, M. B., & Low, P. S. (2000). Oxalic acid, a pathogenicity factor for Sclerotinia sclerotiorum, suppresses the oxidative burst of the host plant. Plant Cell, 12, 2191–2199.CrossRef PubMed PubMedCentral
    Chenault, K. D., Burns, J. A., Melouk, H. A., & Payton, M. E. (2002). Hydrolase activity in transgenic peanut. Peanut Science, 29, 89–95.CrossRef
    Chenault, K. D., Melouk, H. A., & Payton, M. E. (2005). Field reaction to sclerotinia blight among transgenic peanut lines containing antifungal genes. Crop Science, 45, 511–515.CrossRef
    Coffelt, T. A., & Porter, D. M. (1982). Screening peanuts for resistance to sclerotinia blight. Plant Disease, 66, 385–387.CrossRef
    Culbreath, A. K., Todd, J. W., Gorbet, D. W., Shokes, F. M., & Pappu, H. R. (1997). Field response of new peanut cultivar UF 91108 to tomato spotted wilt virus. Plant Disease, 81, 1410–1415.CrossRef
    Davidson, J. I., Jr., & McIntosh, F. P. (1973). Development of a small laboratory sheller for determining peanut milling quality. Journal American Peanut Research & Education Association 5, 95--108.
    Diener, U. L., Jackson, C.R., Cooper, W. E., Stepes, R. J. & Davis, N. D. (1965). Invasion of peanut pods in the soil by Aspergillus flavus. Plant Disease Reporter, 49, 931–935.
    Donaldson, P. A., Anderson, T., Lane, B. G., Davidson, A. L., & Simmonds, D. H. (2001). Soybean plants expressing an active oligomeric oxalate oxidase from the wheat gf-2.8 (germin) gene are resistant to the oxalate-secreting pathogen Sclerotinia sclerotiorum. Physiology Molecular Plant Pathology, 59, 297–307.CrossRef
    Dunwell, J. M., Gibbings, J. G., Mahmood, T., & Saqlan Naqvi, S. M. (2008). Germin and germin-like proteins: evolution, structure, and function. Critical Reviews in Plant Sciences, 27, 342–375.CrossRef
    Dutton, M. V., & Evans, C. S. (1996). Oxalate production by fungi: its role in pathogenicity and ecology in the soil environment. Canadian Journal of Microbiology, 42, 881–895.CrossRef
    Ferrar, P. H., & Walker, J. R. L. (1993). o-diphenol oxidase inhibition–an additional role for oxalic acid in the phytopathogenic arsenal of Sclerotinia sclerotiorum and sclerotium rolfsii. Physiological and Molecular Plant Pathology, 43, 415–422.CrossRef
    He, X., Miyasaka, S. C., Zhu, Y., Moore, P. H., & Fitch, M. M. M. (2009). Taro (colocasia esculenta) transformed with wheat (Triticum aestivum) oxalate oxidase gene showed increased resistance to two taro pathogens phytophthora colocasiae and sclerotium rolfsii. Plant Biology, 11(S2), 335–336.
    He, X., Miyasaka, S. C., Fitch, M. M. M., Khuri, S., & Zhu, Y. (2013). Taro (colocasia esculenta) transformed with a wheat oxalate oxidase gene for improved resistance to taro pathogen phytophthora colocasiae. Hortscience, 48, 22–27.
    Hollowell, J. E., & Shew, B. B. (2001). Oxalic acid production by nine isolates of Sclerotinia minor. Proceedings of American Peanut Research Education Society, 33, 24.
    Hu, X., Bidney, D. L., Yalpani, N., Duvick, J. P., Crasta, O., Folkerts, O., & Lu, G. (2003). Overexpression of a gene encoding hydrogen peroxide-generating oxalate oxidase evokes defense responses in sunflower. Plant Physiology, 133, 170–181.CrossRef PubMed PubMedCentral
    Hu, J., Telenko, D. E. P., Phipps, P. M., & Grabau, E. A. (2014). Assessment of peanut quality and compositional characteristics among transgenic sclerotinia blight-resistant and non-transgenic susceptible cultivars. Journal of Agricultural and Food Chemistry, 62, 7877–7885.CrossRef PubMed
    Hu, J., Telenko, D. E. P., Phipps, P. M., Hills, H., & Grabau, E. A. (2015). Quantifying transgene flow rate in transgenic sclerotinia blight-resistant peanut lines. Field Crops Research, 178, 69–76.CrossRef
    Iqbal, M. M., Nazir, F., Ali, S., Asif, M. A., Zafar, Y., Iqbal, J., & Ali, G. M. (2012). Over expression of rice chitinase gene in transgenic peanut (arachis hypogaea L.) improves resistance against leaf spot. Molecular Biotechnology, 50, 129–136.CrossRef PubMed
    Li, Z., Jarret, R. L., & Demski, J. W. (1997). Engineered resistance to tomato spotted wilt virus in transgenic peanut expressing the viral nucleocapsid gene. Transgenic Research, 6, 297–305.CrossRef
    Liang, H., Maynard, C. A., Allen, R. D., & Powell, W. A. (2001). Increased septoria musiva resistance in transgenic hybrid poplar leaves expressing a wheat oxalate oxidase gene. Plant Molecular Biology, 45, 619–629.CrossRef PubMed
    Livingstone, D. M., Hampton, J. L., Phipps, P. M., & Grabau, E. A. (2005). Enhancing resistance to sclerotinia minor in peanut by expressing a barley oxalate oxidase gene. Plant Physiology, 137, 1354–1362.CrossRef PubMed PubMedCentral
    Lu, G. (2003). Engineering Sclerotinia sclerotiorum resistance in oilseed crops. African Journal of Biotechnology, 2, 509–516.CrossRef
    Mao, J., Burt, A. J., Ramputh, A. I., Simmonds, J., Cass, L., Hubbard, K., Miller, S., Altosaar, I., & Arnason, J. T. (2007). Diverted secondary metabolism and improved resistance to European corn borer (ostrinia nubilalis) in maize (Zea mays L.) transformed with wheat oxalate oxidase. Journal of Agricultural and Food Chemistry, 55, 2582–2589.CrossRef PubMed
    Maxwell, D. P., & Lumsden, R. D. (1970). Oxalic acid production by Sclerotinia sclerotiorum in infected bean and in culture. Phytopathology, 60, 1395–1398.CrossRef
    Molla, K. A., Karmakar, S., Chanda, P. K., Ghosh, S., Sarkar, S. N., Datta, S. K., & Datta, K. (2013). Rice oxalate oxidase gene driven by green tissue-specific promoter increases tolerance to sheath blight pathogen (Rhizoctonia solani) in transgenic rice. Molecular Plant Pathology, 14, 910–922.CrossRef PubMed
    Niu, C., Akasaka-Kennedy, Y., Faustinelli, P., Joshi, M., Rajasekaran, K., Yang, H., Chu, Y., Cary, J., & Ozias-Akins, P. (2009). Antifungal activity in transgenic peanut (arachis hypogaea L.) conferred by a nonheme chloroperoxidase gene. Peanut Science, 36, 126–132.CrossRef
    Partridge-Telenko, D., Hu, J., Livingstone, D., Shew, B., Phipps, P. M., & Grabau, E. A. (2011). Sclerotinia blight resistance in Virginia-type peanut transformed with a barley oxalate oxidase gene. Phytopathology, 101, 786–793.CrossRef PubMed
    Phipps, P. M., & Beute, M. K. (1979). Population dynamics of cylindrocladium crotalariae microsclerotia in naturally-infested soil. Phytopathology, 69, 240–243.CrossRef
    Phipps, P. M., & Powell, N. L. (1984). Evaluation of criteria for the utilization of peanut leaf spot advisories in Virginia. Phytopathology, 74, 1189–1193.CrossRef
    Post, K. H., & Parry, D. (2011). Non-target effects of transgenic blight-resistant American chestnut (fagales: fagaceae) on insect herbivores. Environmental Entomology, 40, 955–963.CrossRef PubMed
    Ramputh, A. I., Arnason, J. T., Cass, L., & Simmonds, J. A. (2002). Reduced herbivory of the European corn borer (ostrinia nubilalis) on corn transformed with germin, a wheat oxalate oxidase gene. Plant Science, 162, 431–440.CrossRef
    Romer Labs. (2007). Romer Labs Methods, Method: PI-000073-1, PI-0. Romer Labs®, Inc. www.​romerlabs.​com . Accessed 16 Jun 2015.
    Schneider, M., Droz, E., Malnoë, P. I. A., Chatot, C., Bonnel, E., & Métraux, J. P. (2002). Transgenic potato plants expressing oxalate oxidase have increased resistance to oomycete and bacterial pathogens. Potato Research, 45, 177–185.CrossRef
    Simko, I., & Piepho, H. P. (2012). The area under the disease progress stairs: calculation, advantage, and application. Phytopathology, 102, 381–389.CrossRef PubMed
    Smith, F. D., Phipps, P. M., & Stipes, R. J. (1992). Fluazinam: a new fungicide for control of sclerotinia blight and other soil borne diseases of peanut. Peanut Science, 19, 115–120.CrossRef
    Stuiver, M. H., & Custers, J. H. H. V. (2001). Engineering disease resistance in plants. Nature, 411, 865–868.CrossRef PubMed
    Thompson, C., Dunwell, J. M., Johnstone, C. E., Lay, V., Schmitt, M., Watson, H., & Nisbet, G. (1995). Degradation of oxalic acid by transgenic oilseed rape plants expressing oxalate oxidase. Euphytica, 85, 169–172.CrossRef
    Xu, L., Xiang, M., White, D., & Chen, W. (2015). pH dependency of sclerotial development and pathogenicity revealed by using genetically defined oxalate-minus mutants of Sclerotinia sclerotiorum. Environmental Microbiology, 17. doi:10.​1111/​1462-2920.​12818 .
    Zhang, X. Y., Nie, Z. H., Wang, W. J., Leung, D. W. M., Xu, D. G., Chen, B. L., Chen, Z., Zeng, L. X., & Liu, E. E. (2013). Relationship between disease resistance and rice oxalate oxidases in transgenic rice. PloS One, 8(10), e78348. doi:10.​1371/​journal.​pone.​0078348 .CrossRef PubMed PubMedCentral
    Zheng, Z., Humphrey, C. W., King, R. S., & Richard, J. L. (2005). Validation of an ELISA test kit for the detection of total aflatoxins in grain and grain products by comparison with HPLC. Mycopathologia, 159, 255–263.CrossRef PubMed
  • 作者单位:Jiahuai Hu (1)
    Darcy E. P. Telenko (2)
    Patrick M. Phipps (3)
    Elizabeth A. Grabau (4)

    1. Citrus Research and Education Center, University of Florida, Lake Alfred, FL, 33850, USA
    2. Cornell Cooperative Extension, Cornell University, East Aurora, NY, 14052, USA
    3. Tidewater Agricultural Research & Extension Center, Virginia Tech, Suffolk, VA, 23437, USA
    4. Department of Plant Pathology, Physiology and Weed Science, Virginia Tech, Blacksburg, VA, 24061, USA
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Life Sciences
    Plant Pathology
    Plant Sciences
    Ecology
  • 出版者:Springer Netherlands
  • ISSN:1573-8469
文摘
Field trials were conducted from 2006 to 2008 at the Tidewater Agricultural Research and Extension Center (TAREC) in Suffolk, Virginia to determine whether Blight Blocker transgenic peanut lines showed possible increased or decreased susceptibility to common peanut pathogens. Disease susceptibility was evaluated for seven transgenic lines containing a barley oxalate oxidase gene and their corresponding parental cultivars (Perry, Wilson, NC 7). In addition to Sclerotinia blight, the peanut diseases evaluated included: i) early leaf spot caused by Cercospora arachidicola, ii) Cylindrocladium black rot caused by Cylindrocladium parasiticum, iii) southern stem rot caused by Sclerotium rolfsii, iv) tomato spotted wilt virus, and v) aflatoxin levels in seeds caused by Aspergillus flavus or A. parasiticus. Results demonstrated that the susceptibility of Blight Blocker transgenic lines to common peanut pathogens was similar to that of non-transgenic cultivars, while transgenic lines provided resistance to Sclerotinia blight caused by S. minor. Transgenic lines consistently provided high levels of resistance to S. minor in all three years, however, the barley oxalate oxidase had little or no effect on the disease susceptibility to other organisms on peanut. The results of this research should provide additional evidence needed to petition for deregulation of Blight Blocker peanut lines.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700