用户名: 密码: 验证码:
Discrete Multi-agent Plan Recognition: Recognizing Teams, Goals, and Plans from Action Sequences
详细信息    查看全文
  • 关键词:Multi ; agent systems ; Plan recognition
  • 刊名:Lecture Notes in Computer Science
  • 出版年:2017
  • 出版时间:2017
  • 年:2017
  • 卷:10162
  • 期:1
  • 页码:212-228
  • 丛书名:Agents and Artificial Intelligence
  • ISBN:978-3-319-53354-4
  • 卷排序:10162
文摘
Multi-agent Plan Recognition (MPAR) infers teams and their goals from observed actions of individual agents. The complexity of creating a priori plan libraries significantly increases to account for diversity of action sequences different team structures may exhibit. A key challenge in MPAR is effectively pruning the joint search space of agent to team compositions and goal to team assignments. Here, we describe discrete Multi-agent Plan Recognition as Planning (MAPRAP), which extends Ramirez and Geffner’s Plan Recognition as Planning (PRAP) approach to multi-agent domains. Instead of a plan library, MAPRAP uses the planning domain and synthesizes plans to achieve hypothesized goals with additional constraints for suspected team composition and previous observations. By comparing costs of plans, MAPRAP identifies feasible interpretations that explain the teams and plans observed. We establish a performance profile for discrete MAPRAP in a multi-agent blocks-world domain. We evaluated precision, accuracy, and recall after each observation. We compare two pruning strategies to dampen the explosion of hypotheses tested. Aggressive pruning averages 1.05 plans synthesized per goal per time step for multi-agent scenarios vice 0.56 for single agent scenarios.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700