用户名: 密码: 验证码:
Simultaneous carotid PET/MR: feasibility and improvement of magnetic resonance-based attenuation correction
详细信息    查看全文
  • 作者:Jason Bini ; Mootaz Eldib ; Philip M. Robson…
  • 关键词:PET/MR ; Attenuation correction ; Dixon ; Ultrashort echo time ; Carotid arteries
  • 刊名:The International Journal of Cardiovascular Imaging (formerly Cardiac Imaging)
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:32
  • 期:1
  • 页码:61-71
  • 全文大小:2,325 KB
  • 参考文献:1.Fayad ZA, Mani V, Woodward M, Kallend D, Abt M, Burgess T, Fuster V, Ballantyne CM, Stein EA, Tardif J-C, Rudd JHF, Farkouh ME, Tawakol A (2011) Safety and efficacy of dalcetrapib on atherosclerotic disease using novel non-invasive multimodality imaging (dal-PLAQUE): a randomised clinical trial. Lancet 378(9802):1547–1559PubMed PubMedCentral CrossRef
    2.Mani V, Woodward M, Samber D, Bucerius J, Tawakol A, Kallend D, Rudd JHF, Abt M, Fayad ZA (2014) Predictors of change in carotid atherosclerotic plaque inflammation and burden as measured by 18-FDG-PET and MRI, respectively, in the dal-PLAQUE study. Int J Cardiovasc Imaging 30(3):571–582PubMed PubMedCentral CrossRef
    3.Heusch P, Buchbender C, Beiderwellen K, Nensa F, Hartung-Knemeyer V, Lauenstein TC, Bockisch A, Forsting M, Antoch G, Heusner TA (2013) Standardized uptake values for [(18)F] FDG in normal organ tissues: comparison of whole-body PET/CT and PET/MRI. Eur J Radiol 82(5):870–876PubMed CrossRef
    4.Drzezga A, Souvatzoglou M, Eiber M, Beer AJ, Fürst S, Martinez-Möller A, Nekolla SG, Ziegler S, Ganter C, Rummeny EJ, Schwaiger M (2012) First clinical experience with integrated whole-body PET/MR: comparison to PET/CT in patients with oncologic diagnoses. J Nucl Med 53(6):845–855PubMed CrossRef
    5.Samarin A, Burger C, Wollenweber SD, Crook DW, Burger IA, Schmid DT, Schulthess GK, Kuhn FP (2012) PET/MR imaging of bone lesions—implications for PET quantification from imperfect attenuation correction. Eur J Nucl Med Mol Imaging 39(7):1154–1160PubMed CrossRef
    6.Akbarzadeh A, Ay MR, Ahmadian A, Alam NR, Zaidi H (2013) MRI-guided attenuation correction in whole-body PET/MR: assessment of the effect of bone attenuation. Ann Nucl Med 27(2):152–162PubMed CrossRef
    7.Aznar MC, Sersar R, Saabye J, Ladefoged CN, Andersen FL, Rasmussen JH, Löfgren J, Beyer T (2014) Whole-body PET/MRI: the effect of bone attenuation during MR-based attenuation correction in oncology imaging. Eur J Radiol 83(7):1177–1183PubMed CrossRef
    8.Keereman V, Van Holen R, Mollet P, Vandenberghe S (2011) The effect of errors in segmented attenuation maps on PET quantification. Med Phys 38(11):6010–6019PubMed CrossRef
    9.Andersen FL, Ladefoged CN, Beyer T, Keller SH, Hansen AE, Højgaard L, Kjær A, Law I, Holm S (2014) Combined PET/MR imaging in neurology: MR-based attenuation correction implies a strong spatial bias when ignoring bone. Neuroimage 84:206–216PubMed CrossRef
    10.Wiesmüller M, Quick HH, Navalpakkam B, Lell MM, Uder M, Ritt P, Schmidt D, Beck M, Kuwert T, von Gall CC (2013) Comparison of lesion detection and quantitation of tracer uptake between PET from a simultaneously acquiring whole-body PET/MR hybrid scanner and PET from PET/CT. Eur J Nucl Med Mol Imaging 40(1):12–21PubMed CrossRef
    11.Ripa RS, Knudsen A, Hag AMF, Lebech A-M, Loft A, Keller SH, Hansen AE, von Benzon E, Højgaard L, Kjær A (2013) Feasibility of simultaneous PET/MR of the carotid artery: first clinical experience and comparison to PET/CT. Am J Nucl Med Mol Imaging 3(4):361–371PubMed PubMedCentral
    12.Martinez-Möller A, Souvatzoglou M, Delso G, Bundschuh RA, Chefdhotel C, Ziegler SI, Navab N, Schwaiger M, Nekolla SG (2009) Tissue classification as a potential approach for attenuation correction in whole-body PET/MRI: evaluation with PET/CT data. J Nucl Med 50(4):520–5266PubMed CrossRef
    13.Keereman V, Fierens Y, Broux T, De Deene Y, Lonneux M, Vandenberghe S (2010) MRI-based attenuation correction for PET/MRI using ultrashort echo time sequences. J Nucl Med 51(5):812–818PubMed CrossRef
    14.Catana C, van der Kouwe A, Benner T, Michel CJ, Hamm M, Fenchel M, Fischl B, Rosen B, Schmand M, Sorensen AG (2010) Toward implementing an MRI-based PET attenuationcorrection method for neurologic studies on the MR-PET brain prototype. J Nucl Med 51(9):1431–1438PubMed PubMedCentral CrossRef
    15.Berker Y, Franke J, Salomon A, Palmowski M, Donker HCW, Temur Y, Mottaghy FM, Kuhl C, Izquierdo-Garcia D, Fayad ZA, Kiessling F, Schulz V (2012) MRI-based attenuation correction for hybrid PET/MRI systems: a 4-class tissue segmentation technique using a combined ultrashort-echo-time/Dixon MRI sequence. J Nucl Med 53(5):796–804PubMed CrossRef
    16.Navalpakkam BK, Braun H, Kuwert T, Quick HH (2013) Magnetic resonance-based attenuation correction for PET/MR hybrid imaging using continuous valued attenuation maps. Invest Radiol 48(5):323–332PubMed CrossRef
    17.Delso G, Zeimpekis K, Carl M, Wiesinger F, Hüllner M, Veit-haibach P (2014) Cluster-based segmentation of dual-echo ultra-short echo time images for PET/MR bone localization, pp 1–13
    18.Johansson A, Karlsson M, Nyholm T (2011) CT substitute derived from MRI sequences with ultrashort echo time. Med Phys 38(5):2708PubMed CrossRef
    19.Marshall HR, Patrick J, Laidley D, Prato FS, Butler J, Théberge J, Thompson RT, Stodilka RZ (2013) Description and assessment of a registration-based approach to include bones for attenuation correction of whole-body PET/MRI. Med Phys 40(8):082509PubMed CrossRef
    20.Delso G, Fürst S, Jakoby B, Ladebeck R, Ganter C, Nekolla SG, Schwaiger M, Ziegler SI (2011) Performance measurements of the Siemens mMR integrated whole-body PET/MR scanner. J Nucl Med 52(12):1914–1922PubMed CrossRef
    21.Burger C, Goerres G, Schoenes S, Buck A, Lonn AHR, Von Schulthess GK (2002) PET attenuation coefficients from CT images: experimental evaluation of the transformation of CT into PET 511-keV attenuation coefficients. Eur J Nucl Med Mol Imaging 29(7):922–927PubMed CrossRef
    22.Bini J, Izquierdo-Garcia D, Mateo J, Machac J, Narula J, Fuster V, Fayad ZA (2013) Preclinical evaluation of MR attenuation correction versus CT attenuation correction on a sequential whole-body MR/PET scanner. Invest Radiol 48(5):313–322PubMed PubMedCentral CrossRef
    23.Bini J, Robson PM, Calcagno C, Eldib M, Fayad ZA (2015) Quantitative carotid PET/MR imaging: clinical evaluation of MR-attenuation correction versus CT-attenuation correction in 18F-FDG PET/MR emission data and comparison to PET/CT. Am J Nucl Med Mol Imaging (in press)
    24.Quick HH (2014) Integrated PET/MR. J Magn Reson Imaging 39(2):243–258PubMed CrossRef
    25.Eldib M, Bini J, Robson PM, Faul D, Fayad ZA (2014) Attenuation correction for flexible MRI coils using the ultra-short echo time sequence in MR/PET imaging. Proc Intl Soc Mag Reson Med 22:0784
    26.Rudd JHF, Myers KS, Bansilal S, Machac J, Pinto CA, Tong C, Rafique A, Hargeaves R, Farkouh M, Fuster V, Fayad ZA (2008) Atherosclerosis inflammation imaging with 18F-FDG PET: carotid, iliac, and femoral uptake reproducibility, quantification methods, and recommendations. J Nucl Med 49(6):871–878PubMed CrossRef
    27.Bucerius J, Mani V, Moncrieff C, Machac J, Fuster V, Farkouh ME, Tawakol A, Rudd JHF, Fayad ZA (2014) Optimizing 18F-FDG PET/CT imaging of vessel wall inflammation: the impact of 18F-FDG circulation time, injected dose, uptake parameters, and fasting blood glucose levels. Eur J Nucl Med Mol Imaging 41(2):369–383PubMed PubMedCentral CrossRef
    28.Bland JM, Altman DG (1986) Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1:307–310PubMed CrossRef
  • 作者单位:Jason Bini (1) (2)
    Mootaz Eldib (1) (2)
    Philip M. Robson (1) (3)
    Claudia Calcagno (1) (3)
    Zahi A. Fayad (1) (3) (4)

    1. Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, P. O. Box 1234, New York, NY, 10029, USA
    2. Department of Biomedical Engineering, The City College of New York, New York, NY, USA
    3. Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
    4. Department of Cardiology, Zena and Michael A. Weiner Cardiovascular Institute and Marie-Josée and Henry R. Kravis Cardiovascular Health Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
  • 刊物类别:Medicine
  • 刊物主题:Medicine & Public Health
    Cardiology
  • 出版者:Springer Netherlands
  • ISSN:1573-0743
文摘
Errors in quantification of carotid positron emission tomography (PET) in simultaneous PET/magnetic resonance (PET/MR) imaging when not incorporating bone in MR-based attenuation correction (MRAC) maps, and possible solutions, remain to be fully explored. In this study, we demonstrated techniques to improve carotid vascular PET/MR quantification by adding a bone tissue compartment to MRAC maps and deriving continuous Dixon-based MRAC (MRACCD) maps. We demonstrated the feasibility of applying ultrashort echo time-based bone segmentation and generation of continuous Dixon MRAC to improve PET quantification on five subjects. We examined four different MRAC maps: system standard PET/MR MRAC map (air, lung, fat, soft tissue) (MRACPET/MR), standard PET/MR MRAC map with bone (air, lung, fat, soft tissue, bone) (MRACPET/MRUTE), MRACCD map (no bone) and continuous Dixon-based MRAC map with bone (MRACCDUTE). The same PET emission data was then reconstructed with each respective MRAC map and a CTAC map (PETPET/MR, PETPET/MRUTE, PETCD, PECDUTE) to assess effects of the different attenuation maps on PET quantification in the carotid arteries and neighboring tissues. Quantitative comparison of MRAC attenuation values for each method compared to CTAC showed small differences in the carotid arteries with UTE-based segmentation of bone included and/or continuous Dixon MRAC; however, there was very good correlation for all methods in the voxel-by-voxel comparison. ROI-based analysis showed a similar trend in the carotid arteries with the lowest correlation to PETCTAC being PETPETMR and the highest correlation to PETCTAC being PETCDUTE. We have demonstrated the feasibility of applying UTE-based segmentation and continuous Dixon MRAC maps to improve carotid PET/MR vascular quantification. Keywords PET/MR Attenuation correction Dixon Ultrashort echo time Carotid arteries

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700