用户名: 密码: 验证码:
Efficient 2-D DOA estimation for coherent sources with a sparse acoustic vector-sensor array
详细信息    查看全文
  • 作者:Zhaoting Liu (1)
    Xieyong Ruan (1)
    Jin He (2)
  • 关键词:Direction ; of ; arrival ; Cross ; correlation ; Coherent signals ; Spatially nonuniform noise ; Linear operation
  • 刊名:Multidimensional Systems and Signal Processing
  • 出版年:2013
  • 出版时间:March 2013
  • 年:2013
  • 卷:24
  • 期:1
  • 页码:105-120
  • 全文大小:540KB
  • 参考文献:1. Abdi A., Guo H. (2009) Signal correlation modeling in acoustic vector sensor arrays. IEEE Transactions on Signal Processing 57(3): 892鈥?03 CrossRef
    2. Chen C., Lorenzelli F., Ralph Hudson K., Yao E. (2008) Stochastic maximum-likelihood DOA estimation in the presence of unknown nonuniform noise. IEEE Transactions on Signal Processing 56(7): 3038鈥?044 CrossRef
    3. Hawkes M., Nehorai A. (2000) Acoustic vector-sensor processing in the presence of a reflecting boundary. IEEE Transactions on Signal Processing 48(11): 2981鈥?993 CrossRef
    4. Hawkes M., Nehorai A. (2003) Wideband source localization using a distributed acoustic vector-sensor array. IEEE Transactions on Signal Processing 51(6): 1479鈥?491 CrossRef
    5. He J., Liu Z. (2009) Computationally efficient underwater acoustic 2-D source localization with arbitrarily spaced vector hydrophones at unknown locations using the propagator method. Multidimensional Systems and Signal Processing 20(3): 285鈥?96 CrossRef
    6. Hurtado M., Nehorai A. (2007) Performance analysis of passive low-grazing-angle source localization in maritime environments using vector sensors. IEEE Transactions on Aerospace and Electronic Systems 43(2): 780鈥?89 CrossRef
    7. Liu T. H., Mendel J. M. (1998) Azimuth and elevation direction finding using arbitrary array geometries. IEEE Transactions on Signal Processing 46(7): 2061鈥?065 CrossRef
    8. Marcos S., Marsal A., Benidir M. (1995) The propagator method for source bearing estimation. Signal Processing 42: 121鈥?38 CrossRef
    9. Nehorai A., Paldi E. (1994) Acoustic vector-sensor array processing. IEEE Transactions on Signal Processing 42(9): 2481鈥?491 CrossRef
    10. Pesavento M., Gershman A. B. (2001) Maximum-likelihood direction-of-arrival estimation in the presence of unknown nonuniform noise. IEEE Transactions on Signal Processing 49(7): 1310鈥?324 CrossRef
    11. Pillai S. U. (1989) Array signal processing. Springer, New York CrossRef
    12. Pillai S. U., Won B. H. K. (1989) Forward/backward spatial smoothing techniques for coherent signals identification. IEEE Transactions on Acoustics Speech and Signal Processing 37: 8鈥?5 CrossRef
    13. Roy R., Kailath T. (1989) ESPRIT-estimation of signal parameters via rotational invariance techniques. IEEE Transactions on Acoustics Speech and Signal Processing 37: 984鈥?95 CrossRef
    14. Schmidt R. O. (1986) Multiple emitter location and signal parameter estimation. IEEE Transactions on Antennas Propagation 34: 276鈥?80 CrossRef
    15. Shan T. J., Wax M., Kailath T. (1985) On spatial smoothing for direction-of-arrival estimation of coherent signals. IEEE Transactions on Acoustics Speech and Signal Processing 33: 806鈥?11 CrossRef
    16. Tao J., Chang W., Cui W. (2007) Vector field smoothing for DOA estimation of coherent underwater acoustic signals in presence of a reflecting boundary. IEEE Sensors Journal 7(8): 1152鈥?158 CrossRef
    17. Tao J., Chang W., Shi Y. (2008) Direction-finding of coherent sources via 鈥榩article-velocity-field smoothing. IET Radar, Sonar and Navigation 2(2): 127鈥?34 CrossRef
    18. Tayem N., Kwon H. M. (2005) L-shape 2-dimensional arrival angle estimation with propagator method. IEEE Transactions on Antennas Propagation 53(5): 1622鈥?630 CrossRef
    19. Wong K. T., Zoltowski M. D. (1997a) Closed-form underwater acoustic direction-finding with arbitrarily spaced vector hydrophones at unknown locations. IEEE Journal of Oceanic Engineering 22(3): 566鈥?75 CrossRef
    20. Wong K. T., Zoltowski M. D. (1997b) Extended-aperture underwater acoustic multi-source azimuth/ elevation direction-finding using uniformly but sparsely spaced vector hydrophones. IEEE Journal of Oceanic Engineering 22(4): 659鈥?72 CrossRef
    21. Wong K. T., Zoltowski M. D. (2000) Self-initiating MUSIC-based direction finding in underwater acoustic particle velocity-field beamspace. IEEE Journal of Oceanic Engineering 25(2): 262鈥?73 CrossRef
    22. Wu Y., Liao G., So H. C. (2003) A fast algorithm for 2-D direction-of-arrival estimation. Signal Processing 83: 1827鈥?831 CrossRef
    23. Xin J., Sano A. (2005) Efficient subspace-based algorithm for adaptive bearing estimation and tracking. IEEE Transactions on Signal Processing 53(12): 4485鈥?505 CrossRef
    24. Xu Y., Liu Z., Cao J. (2007) Perturbation analysis of conjugate MI-ESPRIT for single acoustic vector-sensor-based noncircular signal direction finding. Signal Processing 87(7): 1597鈥?612 CrossRef
    25. Zoltowski M. D., Wong K. T. (2000) Closed-form eigenstructure-based direction finding using arbitrary but identical subarrays on a sparse uniform Cartesian array grid. IEEE Transactions on Signal Processing 48(8): 2205鈥?210 CrossRef
  • 作者单位:Zhaoting Liu (1)
    Xieyong Ruan (1)
    Jin He (2)

    1. Department of Electronic Engineering, Shaoxing University, Shaoxing, 312000, Zhejiang, China
    2. Department of Electronic Engineering, Nanjing University of Science and Technology, Nanjing, 210094, Jiangsu, China
  • ISSN:1573-0824
文摘
This paper proposes a computationally efficient two-dimensional (2-D) direction-of-arrival (DOA) estimation algorithm based extended-aperture for acoustic coherent signals impinging on a sparse acoustic vector-sensor array. The coherency of incident signals is decorrelated through matrix averaging and the signal/noise subspaces are reconstructed through a linear operation of a matrix formed from the cross-correlations between some sensor data, where the effect of additive noise is eliminated. Consequently, DOAs can be estimated without performing eigen-decomposition (into signal/noise subspaces), and there is no need to evaluate all correlations of the array data. The derived estimates are automatically matched by translating eigenvalues into real-valued ones, furthermore, the proposed method can achieve the unambiguous direction estimates with enhanced accuracy by setting the vector sensors to space much farther apart than a half-wavelength, and it is also suitable for the case of spatially nonuniform noise, which may be more realistic scenario for the sparsely placed sensors. The performance of the proposed method is demonstrated through numerical examples.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700