用户名: 密码: 验证码:
Derivation of Structure Parameters of Temperature and Humidity in the Convective Boundary Layer from Large-Eddy Simulations and Implications for the Interpretation of Scintillometer Observations
详细信息    查看全文
  • 作者:Bj?rn Maronga (1)
    Arnold F. Moene (2)
    Dani?lle van Dinther (2)
    Siegfried Raasch (1)
    Fred C. Bosveld (3)
    Beniamino Gioli (4)
  • 关键词:Convective boundary layer ; Large ; eddy simulation ; Turbulent structure parameter ; Virtual scintillometer
  • 刊名:Boundary-Layer Meteorology
  • 出版年:2013
  • 出版时间:July 2013
  • 年:2013
  • 卷:148
  • 期:1
  • 页码:1-30
  • 全文大小:1370KB
  • 参考文献:1. Andreas EL (1988) Estimating $C_n^2$ over snow and sea ice from meterological data. J Opt Soc Am 5:481-95 CrossRef
    2. Beyrich F, de Bruin H et al (2002) Results from one-year continuous operation of a large aperture scintillometer over a heterogeneous land surface. Boundary-Layer Meteorol 105:85-7 CrossRef
    3. Beyrich F, Kouznetsov RD, Leps JP, Lüdi A, Meijninger WML, Weisensee U (2006a) Structure parameters of temperature and humidity from simultaneous eddy-covariance and scintillometer measurements. Meteorol Z 14:641-49 CrossRef
    4. Beyrich F, Leps JP et al (2006b) Area-averaged surface fluxes over the LITFASS region based on eddy-covariance measurements. Boundary-Layer Meteorol 121:33-5 CrossRef
    5. Beyrich F, Bange J et al (2012) Towards a validation of scintillometer measurements: the LITFASS-2009 experiment. Boundary-Layer Meteorol 144:83-12 CrossRef
    6. Braam M, Bosveld FC, Moene AF (2012) On Monin–Obukhov scaling in and above the atmospheric surface layer: the complexities of elevated scintillometer measurements. Boundary-Layer Meteorol 144:157-77. doi:10.1007/s10546-012-9716-7 CrossRef
    7. Burk SD (1981) Comparison of structure parameter scaling expressions with turbulence closure models predictions. J Atmos Sci 38:751-61 CrossRef
    8. Cheinet S, Cumin P (2011) Local structure parameters of temperature and humidity in the entrainment-drying convective boundary layer: a large-eddy simulation analysis. J Appl Meteorol 50:472-81 CrossRef
    9. Cheinet S, Siebesma AP (2007) The impact of boundary layer turbulence on optical propagation. In: Proc. SPIE 6747, Optics in atmospheric propagation and adaptive systems X, Florence, Italy, p 67470A. doi:10.1117/12.741433
    10. Cheinet S, Siebesma AP (2009) Variability of local structure parameters in the convective boundary layer. J Atmos Sci 66:1002-017 CrossRef
    11. Corrsin S (1951) On the spectrum of isotropic temperature fluctuations in an isotropic turbulence. J Appl Phys 22:469-73 CrossRef
    12. de Arellano J, Gioli B et al (2004) Entrainment process of carbon dioxide in the atmospheric boundary layer. J Geophys Res 109:D18110. doi:10.1029/2004JD004725 CrossRef
    13. Deardorff JW (1974) Three-dimensional numerical study of the height and mean structure of a heated planetary boundary layer. Boundary-Layer Meteorol 7:81-06
    14. Deardorff JW (1980) Stratocumulus-capped mixed layers derived from a three-dimensional model. Boundary-Layer Meteorol 18:495-27 CrossRef
    15. Fairall CW (1987) A top-down and bottom-up diffusion model of $C_T^2$ and $C_Q^2$ in the entraining convective boundary layer. J Atmos Sci 44:1009-017 CrossRef
    16. Gioli B, Miglietta F, Vaccari FP, Zaldei A, De Martino B (2006) The Sky Arrow ERA, an innovative airborne platform to monitor mass, momentum and energy exchange of ecosystems. Ann Geophys Italy 49:109-16
    17. Glendening JW, Haack T (2001) Influence of advection differencing error upon large-eddy simulation accuracy. Boundary-Layer Meteorol 98:127-53 CrossRef
    18. Grinsted A, Moor JC, Jewrejava S (2004) Application of the cross wavelet transform and wavelet coherence to geophysical time series. Nonlinear Process Geophys 11:566-81 CrossRef
    19. Hartogensis OK, De Bruin HAR (2005) Monin–Obukhov similarity functions of the structure parameter of temperature and tke dissipation rate in the stable boundary layer. Boundary-Layer Meteorol 116:253-76 CrossRef
    20. Hartogensis OK, Watts CJ, Rodriguez JC, De Bruin HAR (2003) Derivation of an effective height for scintillometers: La poza experiment in northwest mexico. J Hydrol 4:915-28
    21. Heus T, van Heerwaarden C, Jonker HJJ, Siebesma AP, Axelsen S et al (2010) Formulation of the dutch atmospheric large-eddy simulation (DALES) and overview of its applications. Geosci Model Dev 3:415-44 CrossRef
    22. Hill RJ (1978) Spectra of fluctuations in refractivity, humidity, and the temperature-humidity cospectrum in the inertial and dissipation range. Radio Sci 13:953-61 CrossRef
    23. Hill RJ, Clifford SF, Lawrence RS (1980) Refractive-index and absorption fluctuations in the infrared caused by temperature, humidity and pressure fluctuations. J Opt Soc Am 70:1192-205 CrossRef
    24. Kaimal JC, Wyngaard JC, Haugen DA, Coté OR, Izumi Y (1976) Turbulence structure in the convective boundary layer. J Atmos Sci 33:2152-169 CrossRef
    25. Kimmel SJ, Wyngaard JC, Otte MJ (2002) “Log-Chipper-turbulence in the convective boundary layer. J Atmos Sci 59:1124-134 CrossRef
    26. Kohsiek W (1982) Measuring $C_T^2,\, C_Q^2$ , and $C_{TQ}$ in the unstable surface layer, and relations to the vertical fluxes of heat and moisture. Boundary-Layer Meteorol 24:89-07 CrossRef
    27. Kohsiek W (1988) Observation of the structure parameters $C_T^2,\, C_{TQ}$ , and $C_Q$ in the mixed layer over land. Appl Opt 27:2236-240 CrossRef
    28. Kohsiek W, Meijninger WML et al (2002) An extra large aperture scintillometer for long range applications. Boundary-Layer Meteorol 105:119-27 CrossRef
    29. Maronga B, Raasch S (2013) Large-eddy simulations of surface heterogeneity effects on the convective boundary layer during the LITFASS-2003 experiment. Boundary-Layer Meteorol 146:17-4. doi:10.1007/s10546-012-9748-z CrossRef
    30. Martin S, Bange J, Beyrich F (2010) Profiling the lower troposphere using the research UAV ‘M $^2$ AV- Atmos Meas Tech Discuss 3:1-1 CrossRef
    31. Meijninger WML, Green AE et al (2002a) Determination of area-averaged water vapour fluxes with large aperture and radio wave scintillometers over a heterogeneous surface - Flevoland field experiment. Boundary-Layer Meteorol 105:63-3 CrossRef
    32. Meijninger WML, Hartogensis OK et al (2002b) Determination of area-averaged sensible heat fluxes with a large aperture scintillometer over a heterogeneous surface—Flevoland field experiment. Boundary-Layer Meteorol 105:37-2 CrossRef
    33. Meijninger WML, Beyrich F, Lüdi A, Kohsiek W, De Bruin HAR (2006) Scintillometer-based turbulent fluxes of sensible and latent heat over a heterogeneous land surface—a contribution to LITFASS-2003. Boundary-Layer Meteorol 121:89-10 CrossRef
    34. Moene AF (2003) Effects of water vapour on the structure parameter of the refractive index for near-infrared radiation. Boundary-Layer Meteorol 107:635-53 CrossRef
    35. Moene AF, Gioli B (2008) Understanding the scintillometer signal: spatial variability of structure parameters using wavelet analysis. In: 18th symposium on boundary layers and turbulence. American Meteorological Society, Stockholm, Sweden, paper 8B.3
    36. Moeng CH, Wyngaard JC (1988) Spectral analysis of large-eddy simulation of the convective boundary layer. J Atmos Sci 45:3573-597 CrossRef
    37. Moene AF, Michels BI, Holtslag AAM (2006) Scaling variances of scalars in a convective boundary layer under different entrainment regimes. Boundary-Layer Meteorol 120:257-74 CrossRef
    38. Muschinski A (2004) Local and global statistics of clear-air doppler radar signals. Radio Sci 39:RS1008. doi:10.1020/2003RS002908 CrossRef
    39. Muschinski A, Frehlich R, Balsley BB (2004) Small-scale and large-scale intermittency in the nocturnal boundary layer and the residual layer. J Fluid Mech 515:319-51 CrossRef
    40. Ochs GR, Wang T (1978) Finite aperture scintillometer for profiling wind and $C_n^2$ . Appl Opt 17:3774-778 CrossRef
    41. Peltier LJ, Wyngaard JC (1995) Structure-function parameters in the convective boundary layer from large-eddy simulations. J Atmos Sci 52:3641-660 CrossRef
    42. Petenko IV, Shurygin EA (1999) A two-regime model for the probability density function of the temperature structure parameter in the convective boundary layer. Boundary-Layer Meteorol 93:381-94 CrossRef
    43. Piacsek SA, Williams GP (1970) Conservation properties of convection difference schemes. J Comput Phys 198:580-16
    44. Raasch S, Franke T (2011) Structure and formation of dust-devil-like vortices in the atmospheric boundary layer—a high resolution numerical study. J Geophys Res 116:D16120. doi:10.1029/2011JD016010 CrossRef
    45. Raasch S, Schr?ter M (2001) PALM—a large-eddy simulation model performing on massively parallel computers. Meteorol Z 10:363-72 CrossRef
    46. Sorbjan Z (1988) Local similarity on the convective boundary layer (CBL). Boundary-Layer Meteorol 45:237-50 CrossRef
    47. Sreenivasan KR (1996) The passive scalar spectrum and the Obukhov–Corrsin constant. Phys Fluids 8:189-96 CrossRef
    48. Stull RB (1988) An introduction to boundary layer meteorology. Kluwer, Dordrecht, 666 pp
    49. Tatarskii VI (1971) The effects of the turbulent atmosphere on wave propagation. Kefer Press, Jerusalem, 472 pp
    50. Tennekes H, Lumley JL (1973) A first course in turbulence. MIT, Cambridge, USA, 300 pp
    51. Torrence C, Compo GP (1998) A practical guide to wavelet analysis. Bull Am Meteorol Soc 79:61-8 CrossRef
    52. van den Kroonenberg AC, Martin S, Beyrich F, Bange J (2012) Spatially-averaged temperature structure parameter over a heterogeneous surface measured by an unmanned aerial vehicle. Boundary-Layer Meteorol 142:55-7 CrossRef
    53. Wang T, Ochs GR, Clifford SF (1978) A saturation-resistant optical scintillometer to measure $C_n^2$ . J Opt Soc Am 68:334-38 CrossRef
    54. Wicker LJ, Skamarock WC (2002) Time-splitting methods for elastic models using forward time schemes. Mon Weather Rev 130:2088-097 CrossRef
    55. Wilson C, Fedorovich E (2012) Direct evaluation of refractive-index structure functions from large-eddy simulation output for atmospheric convective boundary layers. Acta Geophys 60:1474-492 CrossRef
    56. Wyngaard JC, LeMone MA (1980) Behavior of the refractive index structure parameter in the entraining convective boundary layer. J Atmos Sci 37:1573-585 CrossRef
    57. Wyngaard JC, Coté OR, Izumi Y (1971a) Local free convection, similarity, and the budgets of shear stress and heat flux. J Atmos Sci 28:1171-182 CrossRef
    58. Wyngaard JC, Izumi Y, Collins SAJ (1971b) Behavior of the refractive-index-structure parameter near the ground. J Opt Soc Am 61:1646-650 CrossRef
  • 作者单位:Bj?rn Maronga (1)
    Arnold F. Moene (2)
    Dani?lle van Dinther (2)
    Siegfried Raasch (1)
    Fred C. Bosveld (3)
    Beniamino Gioli (4)

    1. Institut für Meteorologie und Klimatologie, Leibniz Universit?t Hannover, Herrenh?user Str. 2, 30419, Hannover, Germany
    2. Meteorology and Air Quality Section, Wageningen University, Wageningen, The Netherlands
    3. Regional Climate Division, Royal Netherlands Meteorological Institute, De Bilt, The Netherlands
    4. Institute of Biometeorology, National Research Council, Florence, Italy
  • ISSN:1573-1472
文摘
We derive the turbulent structure parameters of temperature $C_{T}^2$ and humidity $C_q^2$ from high-resolution large-eddy simulations (LES) of a homogeneously-heated convective boundary layer. Boundary conditions and model forcing were derived from measurements at Cabauw in The Netherlands. Three different methods to obtain the structure-parameters from LES are investigated. The shape of the vertical structure-parameter profiles from all three methods compare well with former experimental and LES results. Depending on the method, deviations in the magnitude up to a factor of two are found and traced back to the effects of discretization and numerical dissipation of the advection scheme. Furthermore, we validate the LES data with airborne and large-aperture scintillometer (LAS) measurements at Cabauw. Virtual path measurements are used to study the variability of $C_{T}^2$ in the mixed layer and surface layer and its implications for airborne and LAS measurements. A high variability of $C_{T}^2$ along a given horizontal path in the LES data is associated with plumes (high values) and downdrafts (low values). The path average of $C_{T}^2$ varies rapidly in time due to the limited path length. The LES results suggest that measured path averages require sufficient temporal averaging and an adequate ratio of path length to height above the ground for the LAS in order to approach the domain average of $C_{T}^2$ .

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700