用户名: 密码: 验证码:
The Putative Role of Viruses, Bacteria, and Chronic Fungal Biotoxin Exposure in the Genesis of Intractable Fatigue Accompanied by Cognitive and Physical Disability
详细信息    查看全文
  • 作者:Gerwyn Morris ; Michael Berk ; Ken Walder ; Michael Maes
  • 关键词:Immune ; Inflammation ; Oxidative stress ; Toll ; like receptor ; Cognition ; Depression ; Chronic fatigue syndrome ; Neurology ; Psychiatry
  • 刊名:Molecular Neurobiology
  • 出版年:2016
  • 出版时间:May 2016
  • 年:2016
  • 卷:53
  • 期:4
  • 页码:2550-2571
  • 全文大小:660 KB
  • 参考文献:1.White PD, Goldsmith KA, Johnson AL, Potts L, Walwyn R, DeCesare JC, Baber HL, Burgess M, Clark LV, Cox DL, Bavinton J, Angus BJ, Murphy G, Murphy M, O’Dowd H, Wilks D, McCrone P, Chalder T, Sharpe M, PACE trial management group (2011) Comparison of adaptive pacing therapy, cognitive behaviour therapy, graded exercise therapy, and specialist medical care for chronic fatigue syndrome (PACE): a randomized trial. Lancet 377:823–836PubMed PubMedCentral CrossRef
    2.Núñez M, Fernández-Solà J, Nuñez E, Fernández-Huerta JM, Godás-Sieso T, Gomez-Gil E (2011) Health-related quality of life in patients with chronic fatigue syndrome: group cognitive behavioural therapy and graded exercise versus usual treatment. A randomised controlled trial with 1year of follow-up. Clin Rheumatol 30:381–389PubMed CrossRef
    3.Morris G, Maes M (2013) Case definitions and diagnostic criteria for Myalgic Encephalomyelitis and Chronic fatigue Syndrome: from clinical-consensus to evidence-based case definitions. Neuro Endocrinol Lett 34:185–199PubMed
    4.Morris G, Maes M (2013) Myalgic encephalomyelitis/chronic fatigue syndrome and encephalomyelitis disseminata/multiple sclerosis show remarkable levels of similarity in phenomenology and neuroimmune characteristics. BMC Med 11:205PubMed PubMedCentral CrossRef
    5.Morris G, Maes M (2013) A neuro-immune model of myalgic encephalomyelitis/chronic fatigue syndrome. Metab Brain Dis 28:523–540PubMed CrossRef
    6.Hilgers A, Frank J (1994) Chronic fatigue syndrome: immune dysfunction, role of pathogens and toxic agents and neurological and cardial changes. Wien Med Wochenschr 144:399–406PubMed
    7.Hilgers A, Krueger GR, Lembke U, Ramon A (1991) Postinfectious chronic fatigue syndrome: case history of thirty-five patients in Germany. In Vivo 5:201–205PubMed
    8.Gow JW, Hagan S, Herzyk P, Cannon C, Behan PO, Chaudhuri A (2009) A gene signature for post-infectious chronic fatigue syndrome. BMC Med Genet 2:38
    9.Carlo-Stella N, Badulli C, De Silvestri A, Bazzichi L, Martinetti M, Lorusso L, Bombardieri S, Salvaneschi L, Cuccia M (2006) A first study of cytokine genomic polymorphisms in CFS: positive association of TNF-857 and IFNgamma 874 rare alleles. Clin Exp Rheumatol 24:179–182PubMed
    10.Shimosako N, Kerr JR (2014) Use of single-nucleotide polymorphisms (SNPs) to distinguish gene expression subtypes of chronic fatigue syndrome/myalgic encephalomyelitis (CFS/ME). J Clin Pathol 67(12):1078–1083PubMed CrossRef
    11.Lee KA, Gay CL, Lerdal A, Pullinger CR, Aouizerat BE (2014) Cytokine polymorphisms are associated with fatigue in adults living with HIV/AIDS. Brain Behav Immun 40:95–103PubMed PubMedCentral CrossRef
    12.Turvey SE, Hawn TR (2006) Towards subtlety: understanding the role of Toll-like receptor signaling in susceptibility to human infections. Clin Immunol 120:1–9PubMed CrossRef
    13.Misch EA, Hawn TR (2008) Toll-like receptor polymorphisms and susceptibility to human disease. Clin Sci (Lond) 114:347–360CrossRef
    14.Vollmer-Conna U, Piraino B, Cameron B, Davenport T, Hickie I, Wakefield D, Lloyd AE, Dubbo Infection Outcomes Study Group (2008) Cytokine polymorphisms have a synergistic effect on severity of the acute sickness response to infection. Clin Infect Dis 47:1418–1425PubMed CrossRef
    15.Helbig K, Harris R, Ayres J, Dunckley H, Lloyd A, Robson J, Marmion B (2005) Immune response genes in the post-Q-fever fatigue syndrome, Q fever endocarditis and uncomplicated acute primary Q fever. QJM 98:565–574PubMed CrossRef
    16.Helbig K, Heatley S, Harris R, Mullighan C, Bardy P, Marmion B (2003) Variation in immune response genes and chronic Q fever. Concepts: preliminary test with post-Q fever fatigue syndrome. Genes Immun 4:82–85PubMed CrossRef
    17.Hickie I, Davenport T, Wakefield D, Vollmer-Conna U, Cameron B, Vernon S, Reeves WC, Lloyd A, Dubbo Infection Outcomes Study Group (2006) Post-infective and chronic fatigue syndromes precipitated by viral and non-viral pathogens: prospective cohort study. BMJ 333:575PubMed PubMedCentral CrossRef
    18.Vollmer-Conna U, Fazou C, Cameron B, Li H, Brennan C, Luck L, Davenport T, Wakefield D, Hickie I, Lloyd A (2004) Production of pro-inflammatory cytokines correlates with the symptoms of acute sickness behaviour in humans. Psychol Med 34:1289–1297PubMed CrossRef
    19.Honstettre A, Imbert G, Ghigo E, Gouriet F, Capo C, Raoult D, Mege J (2003) Dysregulation of cytokines in acute Q fever: role of interleukin-10 and tumor necrosis factor in chronic evolution of Q fever. J Infect Dis 187:956–962PubMed CrossRef
    20.Morris G, Maes M (2014) Mitochondrial dysfunctions in myalgic encephalomyelitis/chronic fatigue syndrome explained by activated immuno-inflammatory, oxidative and nitrosative stress pathways. Metab Brain Dis 29:19–36PubMed CrossRef
    21.Cunningham C (2013) Microglia and neurodegeneration: the role of systemic inflammation. Glia 61:71–90PubMed CrossRef
    22.Lucas K, Maes M (2013) Role of the Toll Like receptor (TLR) radical cycle in chronic inflammation: possible treatments targeting the TLR4 pathway. Mol Neurobiol 48:190–204PubMed CrossRef
    23.Guijarro-Muñoz I, Compte M, Álvarez-Cienfuegos A, Álvarez-Vallina L, Sanz L (2014) Lipopolysaccharide activates Toll-like receptor 4 (TLR4)-mediated NF-κB signalingpathway and proinflammatory response in human pericytes. J Biol Chem 289:2457–2468PubMed PubMedCentral CrossRef
    24.Yang Y, Kim SC, Yu T, Yi YS, Rhee MH, Sung GH, Yoo BC, Cho JY (2014) Functional roles of p38 mitogen-activated protein kinase in macrophage-mediated inflammatory responses. Mediat Inflamm 2014:352371
    25.Uchida K (2013) Redox-derived damage-associated molecular patterns: ligand function of lipid peroxidation adducts. Redox Biol 1:94–96PubMed PubMedCentral CrossRef
    26.Moghaddam AE, Gartlan KH, Kong L, Sattentau QJ (2011) Reactive carbonyls are a major Th2-inducing damage-associated molecular pattern generated by oxidative stress. J Immunol 187:1626–1633PubMed CrossRef
    27.Simmons JD, Lee YL, Mulekar S, Kuck JL, Brevard SB, Gonzalez RP, Gillespie MN, Richards WO (2013) Elevated levels of plasma mitochondrial DNA DAMPs are linked to clinical outcome in severely injured human subjects. Ann Surg 258:591–596, discussion 596–8 PubMed
    28.Mathew A, Lindsley TA, Sheridan A, Bhoiwala DL, Hushmendy SF, Yager EJ, Ruggiero EA, Crawford DR (2012) Degraded mitochondrial DNA is a newly identified subtype of the damage associated molecular pattern (DAMP) family and possible trigger of neurodegeneration. J Alzheimers Dis 30:617–627PubMed
    29.Maes M, Twisk FN (2010) Chronic fatigue syndrome: Harvey and Wessely’s (bio)psychosocial model versus a bio(psychosocial) model based on inflammatory and oxidative and nitrosative stress pathways. BMC Med 8:35PubMed PubMedCentral CrossRef
    30.Liang Y, Liu J, Feng Z (2013) The regulation of cellular metabolism by tumor suppressor p53. Cell Biosci 3:9PubMed PubMedCentral CrossRef
    31.Morris G, Maes M (2012) Increased nuclear factor-κB and loss of p53 are key mechanisms in Myalgic Encephalomyelitis/chronic fatigue syndrome (ME/CFS). Med Hypotheses 79:607–613PubMed CrossRef
    32.Straus SE, Tosato G, Armstrong G, Lawley T, Preble OT, Henle W, Davey R, Pearson G, Epstein J, Brus I, Blaese RM (1985) Persisting illness and fatigue in adults with evidence of Epstein-Barr virus infection. Ann Intern Med 102:7–16PubMed CrossRef
    33.Tobi M, Morag A, Ravid Z, Chowers I, Feldman-Weiss V, Michaeli Y, Ben-Chetrit E, Shalit M, Knobler H (1982) Prolonged atypical illness associated with serological evidence of persistent Epstein-Barr virus infection. Lancet 1:61–64PubMed CrossRef
    34.Okano M, Matsumoto S, Osato T, Sakiyama Y, Thiele GM, Purtilo DT (1991) Severe chronic active Epstein-Barr virus infection syndrome. Clin Microbiol Rev 4:129–135PubMed PubMedCentral
    35.Okano M, Kawa K, Kimura H, Yachie A, Wakiguchi H, Maeda A, Imai S, Ohga S, Kanegane H, Tsuchiya S, Morio T, Mori M, Yokota S, Imashuku S (2005) Proposed guidelines for diagnosing chronic active Epstein-Barr virus infection. Am J Hematol 80:64–69PubMed CrossRef
    36.Kimura H, Hoshino Y, Hara S, Sugaya N, Kawada J, Shibata Y, Kojima S, Nagasaka T, Kuzushima K, Morishima T (2005) Differences between T cell-type and natural killer cell-type chronic active Epstein-Barr virus infection. J Infect Dis 191:531–539PubMed CrossRef
    37.Okano M (2000) Haematological associations of Epstein-Barr virus infection. Baillieres Best Pract Res Clin Haematol 13:199–214PubMed CrossRef
    38.Okano M (2011) Features of chronic active Epstein-Barr virus infection and related human diseases. Open Hematol J 5:1–3CrossRef
    39.Thiele GM, Purtilo DT, Okano M (1991) Differential diagnosis of chronic fatigue syndrome: an update. Infect Med 8:45–51
    40.Holmes GP, Kaplan JE, Gantz NM, Komaroff AL, Schonberger LB, Straus SE, Jones JF, Dubois RE, Cunningham-Rundles C, Pahwa S et al (1988) Chronic fatigue syndrome: a working case definition. Ann Intern Med 108:387–389PubMed CrossRef
    41.Buchwald D, Goldenberg DL, Sullivan JL, Komaroff AL (1987) The “chronic, active Epstein-Barr virus infection” syndrome and primary fibromyalgia. Arthritis Rheum 30:1132–1136PubMed CrossRef
    42.Hotchin NA, Read R, Smith DG, Crawford DH (1989) Active Epstein-Barr virus infection in post-viral fatigue syndrome. J Infect 18:143–150PubMed CrossRef
    43.Soto NE, Straus SE (2000) Chronic fatigue syndrome and herpesviruses: the fading evidence. Herpes 7:46–50PubMed
    44.Swanink CM, van der Meer JW, Vercoulen JH, Bleijenberg G, Fennis JF, Galama JM (1995) Epstein-Barr virus (EBV) and the chronic fatigue syndrome: normal virus load in blood and normal immunologic reactivity in the EBV regression assay. Clin Infect Dis 20:1390–1392PubMed CrossRef
    45.Aydin GB, Akyuz C, Talim B, Evans SE, Sahin S, Sari N, Tabanlioglu D, Ozen S, Cağlar M, Büyükpamukçu M (2007) Extranodal type T/NK-cell lymphoma with an atypical clinical presentation. Pediatr Hematol Oncol 24(4):291–299PubMed CrossRef
    46.Sonke GS, Ludwig I, van Oosten H, Baars JW, Meijer E, Kater AP, de Jong D (2008) Poor outcomes of chronic active Epstein-Barr virus infection and hemophagocytic lymphohistiocytosis in non-Japanese adult patients. Clin Infect Dis 47:105–108PubMed CrossRef
    47.Straus SE (1988) The chronic mononucleosis syndrome. J Infect Dis 157:405–412PubMed CrossRef
    48.Fujieda M, Wakiguchi H, Hisakawa H, Kubota H, Kurashige T (1991) Defective activity of Epstein-Barr virus (EBV) specific cytotoxic T lymphocytes in children with chronic active EBV infection and in their parents. Acta Paediatr Jpn 35:394–399CrossRef
    49.Sugaya N, Kimura H, Hara S, Hoshino Y, Kojima S, Morishima T, Tsurumi T, Kuzushima K (2004) Quantitative analysis of Epstein-Barr virus (EBV)-specific CD8+ T cells in patients with chronic active EBV infection. J Infect Dis 190:985–988PubMed CrossRef
    50.Cohen JI, Jaffe ES, Dale JK, Pittaluga S, Heslop HE, Rooney CM, Gottschalk S, Bollard CM, Rao VK, Marques A, Burbelo PD, Turk SP, Fulton R, Wayne AS, Little RF, Cairo MS, El-Mallawany NK, Fowler D, Sportes C, Bishop MR, Wilson W, Straus SE (2011) Characterization and treatment of chronic active Epstein-Barr virus disease: a 28-year experience in the United States. Blood 117:5835–5849PubMed PubMedCentral CrossRef
    51.Macsween KF, Crawford DH (2003) Epstein-Barr virus-recent advances. Lancet Infect Dis 3:131–140PubMed CrossRef
    52.Kimura H, Morita M, Yabuta Y, Kuzushima K, Kato K, Kojima S, Matsuyama T, Morishima T (1999) Quantitative analysis of Epstein-Barr virus load by using a real-time PCR assay. J Clin Microbiol 37:132–136PubMed PubMedCentral
    53.Maeda A, Wakiguchi H, Yokoyama W, Hisakawa H, Tomoda T, Kurashige T (1999) Persistently high Epstein-Barr virus (EBV) loads in peripheral blood lymphocytes from patients with chronic active EBV infection. J Infect Dis 179:1012–1015PubMed CrossRef
    54.Patel S, Zuckerman M, Smith M (2003) Real-time quantitative PCR of Epstein-Barr virus BZLF1 DNA using the Light Cycler. J Virol Methods 109:227–233PubMed CrossRef
    55.Kamranvar SA, Masucci MG (2011) The Epstein-Barr virus nuclear antigen-1 promotes telomere dysfunction via induction of oxidative stress. Leukemia 25:1017–1025PubMed PubMedCentral CrossRef
    56.Gruhne B, Sompallae R, Marescotti D, Kamranvar SA, Gastaldello S, Masucci MG (2009) The Epstein-Barr virus nuclear antigen-1 promotes genomic instability via induction of reactive oxygen species. Proc Natl Acad Sci U S A 106:2313–2318PubMed PubMedCentral CrossRef
    57.Wiedmer A, Wang P, Zhou J, Rennekamp AJ, Tiranti V, Zeviani M, Lieberman PM (2008) Epstein-Barr virus immediate-early protein Zta co-opts mitochondrial single-stranded DNA binding protein to promote viral and inhibit mitochondrial DNA replication. J Virol 82:4647–4655PubMed PubMedCentral CrossRef
    58.LaJeunesse DR, Brooks K, Adamson AL (2005) Epstein-Barr virus immediate-early proteins BZLF1 and BRLF1 alter mitochondrial morphology during lytic replication. Biochem Biophys Res Commun 333:438–442PubMed CrossRef
    59.Sato Y, Kamura T, Shirata N, Murata T, Kudoh A, Iwahori S, Nakayama S, Isomura H, Nishiyama Y, Tsurumi T (2009) Degradation of phosphorylated p53 by viral protein-ECS E3 ligase complex. PLoS Pathog 5, e1000530PubMed PubMedCentral CrossRef
    60.Liu MT, Chang YT, Chen SC, Chuang YC, Chen YR, Lin CS, Chen JY (2005) Epstein-Barr virus latent membrane protein 1 represses p53-mediated DNA repair and transcriptional activity. Oncogene 24:2635–2646PubMed CrossRef
    61.Mauser A, Saito S, Appella E, Anderson CW, Seaman WT, Kenney S (2002) The Epstein-Barr virus immediate-early protein BZLF1 regulates p53 function through multiple mechanisms. J Virol 76:12503–12512PubMed PubMedCentral CrossRef
    62.Volpi A (2004) Epstein-Barr virus and human herpesvirus type 8 infections of the central nervous system. Herpes Suppl 2:120A–127A
    63.Fujimoto H, Asaoka K, Imaizumi T, Ayabe M, Shoji H, Kaji M (2003) Epstein-Barr virus infections of the central nervous system. Intern Med 42:33–40PubMed CrossRef
    64.Tzartos JS, Khan G, Vossenkamper A, Cruz-Sadaba M, Lonardi S, Sefia E, Meager A, Elia A, Middeldorp JM, Clemens M, Farrell PJ, Giovannoni G, Meier UC (2012) Association of innate immune activation with latent Epstein-Barr virus in active MS lesions. Neurology 78:15–23PubMed CrossRef
    65.García-Montojo M, de la Hera B, Varadé J, de la Encarnación A, Camacho I, Domínguez-Mozo M, Árias-Leal A, García-Martínez A, Casanova I, Izquierdo G, Lucas M, Fedetz M, Alcina A, Arroyo R, Matesanz F, Urcelay E, Alvarez-Lafuente R (2014) HERV-W polymorphism in chromosome X is associated with multiple sclerosis risk and with differential expression of MSRV. Retrovirology 11:2PubMed PubMedCentral CrossRef
    66.Kremer D, Schichel T, Förster M, Tzekova N, Bernard C, van der Valk P, van Horssen J, Hartung HP, Perron H, Küry P (2013) Human endogenous retrovirus type W envelope protein inhibits oligodendroglial precursor cell differentiation. Ann Neurol 74:721–732PubMed CrossRef
    67.Mameli G, Poddighe L, Mei A, Uleri E, Sotgiu S, Serra C, Manetti R, Dolei A (2012) Expression and activation by Epstein Barr virus of human endogenous retroviruses-W in blood cells and astrocytes: inference for multiple sclerosis. PLoS One 7, e44991PubMed PubMedCentral CrossRef
    68.Kasztelewicz B, Jankowska I, Pawłowska J, Teisseyre J, Dzierżanowska-Fangrat K (2012) The impact of cytokine gene polymorphisms on Epstein-Barr virus infection outcome in pediatric liver transplant recipients. J Clin Virol 55:226–232PubMed CrossRef
    69.Hurme M, Helminen M (1998) Polymorphism of the IL-1 gene complex in Epstein-Barr virus seronegative and seropositive adult blood donors. Scand J Immunol 48:219–222PubMed CrossRef
    70.Binkley PF, Cooke GE, Lesinski A, Taylor M, Chen M, Laskowski B, Waldman WJ, Ariza ME, Williams MV Jr, Knight DA, Glaser R (2013) Evidence for the role of Epstein Barr Virus infections in the pathogenesis of acute coronary events. PLoS One 8, e54008PubMed PubMedCentral CrossRef
    71.Agut H (2011) Deciphering the clinical impact of acute human herpesvirus 6 (HHV-6) infections. J Clin Virol 52:164–171PubMed CrossRef
    72.Yao K, Crawford JR, Komaroff AL, Ablashi DV, Jacobson S (2010) Review part 2: human herpesvirus-6 in central nervous system diseases. J Med Virol 82:1669–1678PubMed PubMedCentral CrossRef
    73.Birnbaum TCS, Padovan B, Sporer B, Rupprecht TA, Ausserer H, Jaeger G, Pfister HW (2005) Severe meningoencephalitis caused by human herpesvirus 6 type B in an immunocompetent woman treated with ganciclovir. Clin Infect Dis 40:887–889PubMed CrossRef
    74.Isaacson E, Glaser CA, Forghani B, Amad Z, Wallace M, Armstrong RW, Exner MM, Schmid S (2005) Evidence of human herpesvirus 6 infection in 4 immunocompetent patients with encephalitis. Clin Infect Dis 40:890–893PubMed CrossRef
    75.Tavakoli NP, Nattanmai S, Hull R, Fusco H, Dzigua L, Wang H, Dupuis M (2007) Detection and typing of human herpesvirus 6 by molecular methods in specimens from patients diagnosed with encephalitis or meningitis. J Clin Microbiol 45:3972–3978PubMed PubMedCentral CrossRef
    76.Fox RI, Saito I, Chan EK, Josephs S, Salahuddin SZ, Ahlashi DV, Staal FW, Gallo R, Pei-Ping H, Le CS (1989) Viral genomes in lymphomas of patients with Sjögren’s syndrome. J Autoimmun 2:449–455PubMed CrossRef
    77.Ranger-Rogez S, Vidal E, Liozon F, Denis F (1994) Primary Sjögren’s syndrome and antibodies to human herpesvirus type 6. Clin Infect Dis 19:1159–1160PubMed CrossRef
    78.Alvarez-Lafuente R, Fernández-Gutiérrez B, de Miguel S, Jover JA, Rollin R, Loza E, Clemente D, Lamas JR (2005) Potential relationship between herpes viruses and rheumatoid arthritis: analysis with quantitative real time polymerase chain reaction. Ann Rheum Dis 64:1357–1359PubMed PubMedCentral CrossRef
    79.Broccolo F, Drago F, Paolino S, Cassina G, Gatto F, Fusetti L, Matteoli B, Zaccaria E, Parodi A, Lusso P, Ceccherini-Nelli L, Malnati MS (2009) Reactivation of human herpesvirus 6 (HHV-6) infection in patients with connective tissue diseases. J Clin Virol 46:43–46PubMed CrossRef
    80.Goodman AD, Mock DJ, Powers JM, Baker JV, Blumberg BM (2003) Human herpesvirus 6 genome and antigen in acute multiple sclerosis lesions. J Infect Dis 187:1365–1376PubMed CrossRef
    81.Akhyani N, Berti R, Brennan MB, Soldan SS, Eaton JM, McFarland HF, Jacobson S (2000) Tissue distribution and variant characterization of human herpesvirus (HHV)-6: increased prevalence of HHV-6A in patients with multiple sclerosis. J Infect Dis 182:1321–1325PubMed CrossRef
    82.Alvarez-Lafuente R, De las Heras V, Bartolomé M, Picazo JJ, Arroyo R (2004) Relapsing-remitting multiple sclerosis and human herpesvirus 6 active infection. Arch Neurol 61:1523–1527PubMed CrossRef
    83.Watt T, Oberfoell S, Balise R, Lunn MR, Kar AK, Merrihew L, Bhangoo MS, Montoya JG (2012) Response to valganciclovir in chronic fatigue syndrome patients with human herpesvirus 6 and Epstein-Barr virus IgG antibody titers. J Med Virol 84:1967–1974PubMed CrossRef
    84.Komaroff AL (2006) Is human herpesvirus-6 a trigger for chronic fatigue syndrome? J Clin Virol 37:S39–S46PubMed CrossRef
    85.Nicolson GL, Gan R, Haier J (2003) Multiple co-infections (Mycoplasma, Chlamydia, human herpes virus-6) in blood of chronic fatigue syndrome patients: association with signs and symptoms. APMIS 111:557–566PubMed CrossRef
    86.Ablashi DV, Josephs SF, Buchbinder A, Hellman K, Nakamura S, Llana T, Lusso P, Kaplan M, Dahlberg J, Memon S et al (1988) Human B-lymphotropic virus (human herpesvirus-6). J Virol Methods 21:29–48PubMed CrossRef
    87.Patnaik M, Komaroff AL, Conley E, Ojo-Amaize EA, Peter JB (1995) Prevalence of IgM antibodies to human herpesvirus 6 early antigen (p41/38) in patients with chronic fatigue syndrome. J Infect Dis 172:1364–1367PubMed CrossRef
    88.Arena A, Liberto MC, Iannello D, Capozza AB, Focà A (1999) Altered cytokine production after human herpes virus type 6 infection. New Microbiol 22:293–300PubMed
    89.Flamand L, Gosselin J, D’Addario M, Hiscott J, Ablashi DV, Gallo RC, Menezes J (1991) Human herpesvirus 6 induces interleukin-1 beta and tumor necrosis factor alpha, but not interleukin-6, in peripheral blood mononuclear cell cultures. J Virol 65:5105–5110PubMed PubMedCentral
    90.Kikuta H, Nakane A, Lu H, Taguchi Y, Minagawa T, Matsumoto S (1990) Interferon induction by human herpesvirus 6 in human mononuclear cells. J Infect Dis 162:35–38PubMed CrossRef
    91.Prusty BK, Böhme L, Bergmann B, Siegl C, Krause E, Mehlitz A, Rudel T (2012) Imbalanced oxidative stress causes chlamydial persistence during non-productive human herpes virus co-infection. PLoS One 7, e47427PubMed PubMedCentral CrossRef
    92.Yeo WM, Isegawa Y, Chow VT (2008) The U95 protein of human herpesvirus 6B interacts with human GRIM-19: silencing of U95 expression reduces viral load and abrogates loss of mitochondrial membrane potential. J Virol 82:1011–1020PubMed PubMedCentral CrossRef
    93.Li L, Chi J, Zhou F, Guo D, Wang F, Liu G, Zhang C, Yao K (2010) Human herpesvirus 6A induces apoptosis of HSB-2 cells via a mitochondrion-related caspase pathway. J Biomed Res 24:444–451PubMed PubMedCentral CrossRef
    94.Kofod-Olsen E, Møller JM, Schleimann MH, Bundgaard B, Bak RO, Øster B, Mikkelsen JG, Hupp T, Höllsberg P (2013) Inhibition of p53-dependent, but not p53-independent, cell death by U19 protein from human herpesvirus 6B. PLoS One 8, e59223PubMed PubMedCentral CrossRef
    95.Schleimann MH, Møller JM, Kofod-Olsen E, Höllsberg P (2009) Direct Repeat 6 from human herpesvirus-6B encodes a nuclear protein that forms a complex with the viral DNA processivity factor p41. PLoS One 4, e7457PubMed PubMedCentral CrossRef
    96.Reynaud JM, Horvat B (2013) Human herpesvirus 6 and neuroinflammation. ISRN Virol 2013:834890
    97.Opsahl ML, Kennedy PG (2005) Early and late HHV-6 gene transcripts in multiple sclerosis lesions and normal appearing white matter. Brain 128:516–527PubMed CrossRef
    98.Donati D, Akhyani N, Fogdell-Hahn A, Cermelli C, Cassiani-Ingoni R, Vortmeyer A, Heiss JD, Cogen P, Gaillard WD, Sato S, Theodore WH, Jacobson S (2003) Detection of human herpesvirus-6 in mesial temporal lobe epilepsy surgical brain resections. Neurology 61:1405–1411PubMed PubMedCentral CrossRef
    99.Nordström I, Eriksson K (2012) HHV-6B induces IFN-lambda1 responses in cord plasmacytoid dendritic cells through TLR9. PLoS ONE 7, e38683PubMed PubMedCentral CrossRef
    100.Frémont M, Metzger K, Rady H, Hulstaert J, De Meirleir K (2009) Detection of herpesviruses and parvovirus B19 in gastric and intestinal mucosa of chronic fatigue syndrome patients. In Vivo 23:209–213PubMed
    101.Dominguez-Mozo MI, Garcia-Montojo M, López-Cavanillas M, De Las Heras V, Garcia-Martinez A, Arias-Leal AM, Casanova I, Urcelay E, Arroyo R, Alvarez-Lafuente R (2014) Toll-like receptor-9 in Spanish multiple sclerosis patients: an association with the gender. Eur J Neurol 21:537–540PubMed CrossRef
    102.Chapenko S, Krumina A, Logina I, Rasa S, Chistjakovs M, Sultanova A, Viksna L, Murovska M (2012) Association of active human herpesvirus-6, -7 and parvovirus b19 infection with clinical outcomes in patients with myalgic encephalomyelitis/chronic fatigue syndrome. Adv Virol 2012:205085PubMed PubMedCentral CrossRef
    103.Vinnard C, Barton T, Jerud E, Blumberg E (2009) A report of human herpesvirus 6-associated encephalitis in a solid organ transplant recipient and a review of previously published cases. Liver Transpl 15:1242–1246PubMed CrossRef
    104.Norja P, Hokynar K, Aaltonen LM, Chen R, Ranki A, Partio EK, Kiviluoto O, Davidkin I, Leivo T, Eis-Hübinger AM, Schneider B, Fischer HP, Tolba R, Vapalahti O, Vaheri A, Söderlund-Venermo M, Hedman K (2006) Bioportfolio: lifelong persistence of variant and prototypic erythrovirus DNA genomes in human tissue. Proc Natl Acad Sci U S A 103:7450–7453PubMed PubMedCentral CrossRef
    105.Norja P, Eis-Hübinger AM, Söderlund-Venermo M, Hedman K, Simmonds P (2008) Rapid sequence change and geographical spread of human parvovirus B19: comparison of B19 virus evolution in acute and persistent infections. J Virol 82:6427–6433PubMed PubMedCentral CrossRef
    106.Manning A, Willey SJ, Bell JE, Simmonds P (2007) Comparison of tissue distribution, persistence, and molecular epidemiology of parvovirus B19 and novel human parvoviruses PARV4 and human bocavirus. J Infect Dis 195:1345–1352PubMed CrossRef
    107.Servant A, Laperche S, Lallemand F, Marinho V, De Saint Maur G, Meritet JF, Garbarg-Chenon A (2002) Genetic diversity within human erythroviruses: identification of three genotypes. J Virol 76:9124–9134PubMed PubMedCentral CrossRef
    108.Shackelton LA, Holmes EC (2006) Phylogenetic evidence for the rapid evolution of human B19 erythrovirus. J Virol 80:3666–3669PubMed PubMedCentral CrossRef
    109.Corcioli F, Zakrzewska K, Fanci R, De Giorgi V, Innocenti M, Rotellini M, Di Lollo S, Azzi A (2010) Human parvovirus PARV4 DNA in tissues from adult individuals: a comparison with human parvovirus B19 (B19V). Virol J 7:272PubMed PubMedCentral CrossRef
    110.Schneider B, Fryer JF, Reber U, Fischer HP, Tolba RH, Baylis SA, Eis-Hübinger AM (2008) Persistence of novel human parvovirus PARV4 in liver tissue of adults. J Med Virol 80:345–351PubMed CrossRef
    111.Matano S, Kinoshita H, Tanigawa K, Terahata S, Sugimoto T (2003) Acute parvovirus B19 infection mimicking chronic fatigue syndrome. Intern Med 42:903–905PubMed CrossRef
    112.Seishima M, Mizutani Y, Shibuya Y, Arakawa C (2008) Chronic fatigue syndrome after human parvovirus B19 infection without persistent viremia. Dermatology 2164:341–346CrossRef
    113.Kerr JR, Tyrrell DA (2003) Cytokines in parvovirus B19 infection as an aid to understanding chronic fatigue syndrome. Curr Pain Headache Rep 7:333–341PubMed CrossRef
    114.Kerr JR (2005) Pathogenesis of parvovirus B19 infection: host gene variability, and possible means and effects of virus persistence. J Vet Med B Infect Dis Vet Public Health 52:335–339PubMed CrossRef
    115.Sieben M, Schäfer P, Dinsart C, Galle PR, Moehler M (2013) Activation of the human immune system via toll-like receptors by the oncolytic parvovirus H-1. Int J Cancer 132:2548–2556PubMed CrossRef
    116.Hsu GJ, Tzang BS, Tsai CC, Chiu CC, Huang CY, Hsu TC (2011) Effects of human parvovirus B19 on expression of defensins and Toll-like receptors. Chin J Physiol 54:367–376PubMed CrossRef
    117.Raykov Z, Grekova SP, Hörlein R, Leuchs B, Giese T, Giese NA, Rommelaere J, Zawatzky R, Daeffler L (2013) TLR-9 contributes to the antiviral innate immune sensing of rodent parvoviruses MVMp and H-1PV by normal human immune cells. PLoS One 8, e55086PubMed PubMedCentral CrossRef
    118.Duechting A, Tschöpe C, Kaiser H, Lamkemeyer T, Tanaka N, Aberle S, Lang F, Torresi J, Kandolf R, Bock CT (2012) Human parvovirus B19 NS1 protein modulates inflammatory signaling by activation of STAT3/PIAS3 in human endothelial cells. J Virol 82(16):7942–7952CrossRef
    119.Nykky J, Vuento M, Gilbert L (2014) Role of mitochondria in parvovirus pathology. PLoS One 9, e86124PubMed PubMedCentral CrossRef
    120.Nykky J, Tuusa JE, Kirjavainen S, Vuento M, Gilbert L (2010) Mechanisms of cell death in canine parvovirus-infected cells provide intuitive insights to developing nanotools for medicine. Int J Nanomedicine 5:417–428PubMed PubMedCentral
    121.Chia JK, Jackson B (1996) Myopericarditis due to parvovirus B19 in an adult. Clin Infect Dis 23:200–201PubMed CrossRef
    122.Nakashima A, Tanaka N, Tamai K, Kyuuma M, Ishikawa Y, Sato H, Yoshimori T, Saito S, Sugamura K (2006) Survival of parvovirus B19-infected cells by cellular autophagy. Virology 349:254–263PubMed CrossRef
    123.Bucher Praz C, Dessimoz C, Bally F, Reymond S, Troillet N (2012) Guillain-Barré syndrome associated with primary parvovirus B19 infection in an HIV-1-infected patient. Case Rep Med 2012:140780PubMed PubMedCentral
    124.Hobbs JA (2007) Parvovirus B19
    ain interactions: infection, autoimmunity, or both? J Clin Virol 38:364–365PubMed CrossRef
    125.Douvoyiannis M, Litman N, Goldman DL (2009) Neurologic manifestations associated with parvovirus B19 infection. Clin Infect Dis 48:1713–1723PubMed CrossRef
    126.Endresen GK (2003) Mycoplasma blood infection in chronic fatigue and fibromyalgia syndromes. Rheumatol Int 23:211–215PubMed CrossRef
    127.Nijs J, Nicolson GL, De Becker P, Coomans D, De Meirleir K (2022) High prevalence of Mycoplasma infections among European chronic fatigue syndrome patients. Examination of four Mycoplasma species in blood of chronic fatigue syndrome patients. FEMS Immunol Med Microbiol 34:209–214CrossRef
    128.Zuo LL, Wu YM, You XX (2009) Mycoplasma lipoproteins and Toll-like receptors. J Zhejiang Univ Sci B 10:67–76PubMed PubMedCentral CrossRef
    129.Shimizu T, Kida Y, Kuwano K (2008) Mycoplasma pneumoniae-derived lipopeptides induce acute inflammatory responses in the lungs of mice. Infect Immun 76:270–277PubMed PubMedCentral CrossRef
    130.Into T, Kiura K, Yasuda M, Kataoka H, Inoue N, Hasebe A, Takeda K, Akira S, Shibata K (2004) Stimulation of human Toll-like receptor (TLR) 2 and TLR6 with membrane lipoproteins of Mycoplasma fermentans induces apoptotic cell death after NF-kappa B activation. Cell Microbiol 6:187–199PubMed CrossRef
    131.He J, You X, Zeng Y, Yu M, Zuo L, Wu Y (2009) Mycoplasma genitalium-derived lipid-associated membrane proteins activate NF-kappaB through toll-like receptors 1, 2, and 6 and CD14 in a MyD88-dependent pathway. Clin Vaccine Immunol 16:1750–1757PubMed PubMedCentral CrossRef
    132.Rawadi G, Roman-Roman S (1996) Mycoplasma membrane lipoproteins induced proinflammatory cytokines by a mechanism distinct from that of lipopolysaccharide. Infect Immun 64:637–643PubMed PubMedCentral
    133.Li S, Li X, Wang Y, Yang J, Chen Z, Shan S (2014) Global secretome characterization of A549 human alveolar epithelial carcinoma cells during Mycoplasma pneumoniae infection. BMC Microbiol 14:27PubMed PubMedCentral CrossRef
    134.Xu Y, Li H, Chen W, Yao X, Xing Y, Wang X, Zhong J (2013) Mycoplasma hyorhinis activates the NLRP3 inflammasome and promotes migration and invasion of gastric cancer cells. PLoS ONE 8, e77955PubMed PubMedCentral CrossRef
    135.Yang J, Hooper WC, Phillips DJ, Talkington DF (2003) Interleukin-1beta responses to Mycoplasma pneumoniae infection are cell-type specific. Microb Pathog 34:17–25PubMed CrossRef
    136.Lee GS, Subramanian N, Kim AI, Aksentijevich I, Goldbach-Mansky R, Sacks DB, Germain RN, Kastner DL, Chae JJ (2012) The calcium-sensing receptor regulates the NLRP3 inflammasome through Ca2+ and cAMP. Nature 492:123–127PubMed PubMedCentral CrossRef
    137.Murakami T, Ockinger J, Yu J, Byles V, McColl A, Hofer AM, Horng T (2012) Critical role for calcium mobilization in activation of the NLRP3 inflammasome. Proc Natl Acad Sci U S A 109:11282–11287PubMed PubMedCentral CrossRef
    138.Zhou R, Yazdi AS, Menu P, Tschopp J (2011) A role for mitochondria in NLRP3 inflammasome activation. Nature 469:221–225PubMed CrossRef
    139.Sun G, Xu X, Wang Y, Shen X, Chen Z, Yang J (2008) Mycoplasma pneumoniae infection induces reactive oxygen species and DNA damage in A549 human lung carcinoma cells. Infect Immun 76:4405–44413PubMed PubMedCentral CrossRef
    140.Citti C, Nouvel L, Baranowski E (2010) Phase and antigenic variation in mycoplasmas. Future Microbiol 5:1073–1085PubMed CrossRef
    141.van der Merwe J, Prysliak T, Perez-Casal J (2010) Invasion of bovine peripheral blood mononuclear cells and erythrocytes by Mycoplasma bovis. Infect Immun 78:4570–5478PubMed PubMedCentral CrossRef
    142.Grover R, Zhu X, Nieusma T, Jones T, Boero I, MacLeod A, Mark A, Niessen S, Kim HJ, Kong L, Assad-Garcia N, Kwon K, Chesi M, Smider VV, Salomon DR, Jelinek DF, Kyle RA, Pyles RB, Glass JI, Ward AB, Wilson IA, Lerner RA (2014) A structurally distinct human mycoplasma protein that generically blocks antigen-antibody union. Science 343:656–661PubMed PubMedCentral CrossRef
    143.Hopfe M, Deenen R, Degrandi D, Kohrer K, Henrich B (2013) Host cell responses to persistent mycoplasmas-different stages in infection of HeLa cells with Mycoplasma hominis. Plos One 8:54219CrossRef
    144.Vancini R, Benchimol M (2008) Entry and intracellular location of Mycoplasma hominis in Trichomonas vaginalis. Arch Microbiol 1891:7–18
    145.McGowin C, Annan R, Quayle A, Greene S, Ma L, Mancuso MM, Adegboye D, Martin DH (2012) Persistent Mycoplasma genitalium infection of human endocervical epithelial cells elicits chronic inflammatory cytokine secretion. Infect Immun 80:3842–3849PubMed PubMedCentral CrossRef
    146.Nicolson G, Nasralla M, Haier J, Nicolson N (1998) Diagnosis and treatment of chronic mycoplasmal infections in fibromyalgia and chronic fatigue syndromes: relationship to Gulf War Illness. Biomed Ther 16:266–271
    147.Rogers M (2011) Mycoplasma and cancer: in search of the link. Oncotarget 2:271PubMed PubMedCentral CrossRef
    148.Logunov D, Scheblyakov D, Zubkova O, Shmarov M, Rakovskaya I, Gurova K, Tararova ND, Burdelya LG, Naroditsky BS, Ginzburg AL, Gudkov AV (2008) Mycoplasma infection suppresses p53, activates NF-kappaB and cooperates with oncogenic Ras in rodent fibroblast transformation. Oncogene 27:4521–4531PubMed PubMedCentral CrossRef
    149.Christo PP, Silva JS, Werneck IV, Dias SL (2010) Rhombencephalitis possibly caused by Mycoplasma pneumoniae. Arq Neuropsiquiatr 68:656–658PubMed CrossRef
    150.Pellegrini M, O’Brien TJ, Hoy J, Sedal L (1996) Mycoplasma pneumoniae infection associated with an acute brainstem syndrome. Acta Neurol Scand 90:203–206
    151.Urbanek C, Goodison S, Chang M, Porvasnik S, Sakamoto N, Li CZ, Boehlein SK, Rosser CJ (2011) Detection of antibodies directed at M. hyorhinis p37 in the serum of men with newly diagnosed prostate cancer. BMC Cancer 11:233PubMed PubMedCentral CrossRef
    152.Bahar M, Ashtari F, Aghaei M, Akbari M, Salari M, Ghalamkari S (2012) Mycoplasma pneumonia seroposivity in Iranian patients with relapsing-remitting multipl sclerosis: a randomized case–control study. J Pak Med Assoc 62:6–8
    153.Witkin S, Bierhals K, Linhares I, Normand N, Dieterle S, Neuer A (2010) Genetic polymorphism in an inflammasome component, cervical mycoplasma detection and female infertility in women undergoing in vitro fertilization. J Reprod Immunol 84:171–175PubMed CrossRef
    154.Griffiths P, Whitley R, Snydman DR, Singh N, Boeckh M (2008) International Herpes Management Forum. Contemporary management of cytomegalovirus infection in transplant recipients: guidelines from an IHMF workshop, 2007. Herpes 15:4–12PubMed
    155.Griffiths P (1993) Current management of cytomegalovirus disease. J Med Virol 41:106–111CrossRef
    156.Kano Y, Shiohara T (2000) Current understanding of cytomegalovirus infection in immunocompetent individuals. J Dermatol Sci 22:196–204PubMed CrossRef
    157.Eddleston M, Peacock S, Juniper M, Warrell D (1997) Severe cytomegalovirus infection in immunocompetent patients. Clin Infect Dis 24:52–56PubMed CrossRef
    158.Wreghitt T, Teare E, Sule O, Devi R, Rice P (2003) Cytomegalovirus infection in immunocompetent patients. Clin Infect Dis 37:1603–1606PubMed CrossRef
    159.Frascaroli G, Varani S, Mastroianni A, Britton S, Gibellini D, Rossini G, Landini MP, Söderberg-Nauclér C (2006) Dendritic cell function in cytomegalovirus-infected patients with mononucleosis. J Leukoc Biol 79:932–940PubMed CrossRef
    160.Yew K, Carpenter C, Duncan R, Harrison C (2012) Human cytomegalovirus induces TLR4 signaling components in monocytes altering TIRAP, TRAM and downstream interferon-beta and TNF-alpha expression. Plos One 7:44500CrossRef
    161.Compton T, Kurt-Jones E, Boehme K, Belko J, Latz E, Golenbock D, Finberg R (2003) Human cytomegalovirus activates inflammatory cytokine responses via CD14 and Toll-like receptor 2. J Virol 77:4588–4596PubMed PubMedCentral CrossRef
    162.Kijpittayarit S, Eid A, Brown R, Paya C, Razonable R (2007) Relationship between Toll-like receptor 2 polymorphism and cytomegalovirus disease after liver transplantation. Clin Infect Dis 44:1315–1320PubMed CrossRef
    163.Wujcicka W, Wilczy’nski J, Nowakowska D (2014) Alterations in TLRs as new molecular markers of congenital infections with Human cytomegalovirus? Pathog Dis 70:3–16PubMed CrossRef
    164.Jablo’nska A, Paradowska E, Studzi’nska M, Suski P, Nowakowska D, Wiśniewska-Ligier M, Woźniakowska-Gęsicka T, Wilczyński J, Leśnikowski ZJ (2014) Relationship between toll-like receptor 2 Arg677Trp and Arg753Gln and toll-like receptor 4 Asp299Gly polymorphisms and cytomegalovirus infection. Int J Infect Dis 25:11–15CrossRef
    165.Lee G, Kim B (2013) Mitochondria-targeted apoptosis in human cytomegalovirus-infected cells. J Microbiol Biotechnol 23:1627–1635PubMed CrossRef
    166.Andoniou C, Degli-Esposti M (2006) Insights into the mechanisms of CMV-mediated interference with cellular apoptosis. Immunol Cell Biol 84:99–106PubMed CrossRef
    167.Brune W (2011) Inhibition of programmed cell death by cytomegaloviruses. Virus Res 157:144–150PubMed CrossRef
    168.Tanaka K, Zou J, Takeda K, Ferrans V, Sandford G, Johnson T, Finkel T, Epstein SE (1999) Effects of human cytomegalovirus immediate-early proteins on p53-mediated apoptosis in coronary artery smooth muscle cells. Circulation 99:1656–1659PubMed CrossRef
    169.Goldmacher V, Bartle L, Skaletskaya A, Dionne C, Kedersha N, Vater CA, Han JW, Lutz RJ, Watanabe S, Cahir McFarland ED, Kieff ED, Mocarski ES, Chittenden T (1999) A cytomegalovirus-encoded mitochondria-localized inhibitor of apoptosis structurally unrelated to Bcl-2. Proc Natl Acad Sci U S A 96:12536–12541PubMed PubMedCentral CrossRef
    170.O’Brien V (1998) Viruses and apoptosis. J Gen Virol 79:1833–1845PubMed CrossRef
    171.Roulston A, Marcellus R, Branton P (1999) Viruses and apoptosis. Annu Rev Microbiol 53:577–628PubMed CrossRef
    172.Pleskoff O, Casarosa P, Verneuil L, Ainoun F, Beisser P, Smit M, Leurs R, Schneider P, Michelson S, Ameisen JC (2005) The human cytomegalovirus-encoded chemokine receptor US28 induces caspase-dependent apoptosis. FEBS J 272:4163–4177PubMed CrossRef
    173.Rinaldo C, Carney W, Richter B, Black P, Hirsch MS (1980) Mechanisms of immunosuppression in cytomegaloviral mononucleosis. J Infect Dis 141:488–495PubMed CrossRef
    174.Schrier R, Rice G, Oldstone M (1986) Suppression of natural killer cell activity and T cell proliferation by fresh isolates of human cytomegalovirus. J Infect Dis 153:1084–1091PubMed CrossRef
    175.Michelson S (2004) Consequences of human cytomegalovirus mimicry. Hum Immunol 65:465–475PubMed CrossRef
    176.Spencer J, Lockridge K, Barry P, Lin G, Tsang M, Penfold M, Schall T (2002) Potent immunosuppressive activities of cytomegalovirus-encoded interleukin-10. J Virol 76:1285–1292PubMed PubMedCentral CrossRef
    177.Beck K, Meyer-Konig U, Weidmann M, Nern C, Hufert F (2003) Human cytomegalovirus impairs dendritic cell function: a novel mechanism of human cytomegalovirus immune escape. Eur J Immunol 33:1528–1538PubMed CrossRef
    178.Varani S, Frascaroli G, Homman-Loudiyi M, Feld S, Landini M, Soderberg-Naucler C (2005) Human cytomegalovirus inhibits the migration of immature dendritic cells by down-regulating cell-surface CCR1 and CCR5. J Leukoc Biol 77:219–228PubMed CrossRef
    179.Moutaftsi M, Brennan P, Spector S, Tabi Z (2004) Impaired lymphoid chemokine-mediated migration due to a block on the chemokine receptor switch in human cytomegalovirus-infected dendritic cells. J Virol 78:3046–3054PubMed PubMedCentral CrossRef
    180.Kaarbo M, Ager-Wick E, Osenbroch P, Kilander A, Skinnes R, Muller F, Eide L (2011) Human cytomegalovirus infection increases mitochondrial biogenesis. Mitochondrion 11:935–945PubMed CrossRef
    181.Zhang A, Williamson C, Wong D, Bullough M, Brown K, Hathout Y, Colberg-Poley A (2011) Quantitative proteomic analyses of human cytomegalovirus-induced restructuring of endoplasmic reticulum-mitochondrial contacts at late times of infection. Mol Cell Proteomics 10:M111.009936PubMed PubMedCentral CrossRef
    182.Roumier T, Szabadkai G, Simoni AM, Perfettini JL, Paulau AL, Castedo M, Métivier D, Badley A, Rizzuto R, Kroemer G (2006) HIV-1 protease inhibitors and cytomegalovirus vMIA induce mitochondrial fragmentation without triggering apoptosis. Cell Death Differ 13:348–351PubMed CrossRef
    183.Lee Y, Liu C, Cho W, Kuo C, Cheng W, Huang C, Liu C (2014) Presence of cytomegalovirus DNA in leucocytes is associated with increased oxidative stress and subclinical atherosclerosis in healthy adults. Biomarkers 19(2):109–113PubMed CrossRef
    184.Scholz M, Cinatl J, Gross V, Vogel JU, Blaheta RA, Freisleben HJ, Markus BH, Doerr HW (1996) Impact of oxidative stress on human cytomegalovirus replication and on cytokine-mediated stimulation of endothelial cells. Transplantation 61:1763–1770PubMed CrossRef
    185.Jaganjac M, Matijevic T, Cindric M, Cipak A, Mrakovcic L, Gubisch W, Zarkovic N (2010) Induction of CMV-1 promoter by 4-hydroxy-2-nonenal in human embryonic kidney cells. Acta Biochim Pol 57:179–183PubMed
    186.Lee J, Koh K, Kim Y, Ahn J, Kim S (2013) Upregulation of Nrf2 expression by human cytomegalovirus infection protects host cells from oxidative stress. J Gen Virol 94:1658–1668PubMed CrossRef
    187.Tilton C, Clippinger A, Maguire T, Alwine J (2011) Human cytomegalovirus induces multiple means to combat reactive oxygen species. J Virol 85:12585–12593PubMed PubMedCentral CrossRef
    188.Savaryn JP, Reitsma JM, Bigley TM, Halligan BD, Qian Z, Yu D, Terhune SS (2013) Human cytomegalovirus pUL29/28 and pUL38 repression of p53-regulated p21CIP1 and caspase 1 promoters during infection. J Virol 87:2463–2474PubMed PubMedCentral CrossRef
    189.Chen Z, Knutson E, Wang S, Martinez L, Albrecht T (2007) Stabilization of p53 in human cytomegalovirus-initiated cells is associated with sequestration of HDM2 and decreased p53 ubiquitination. J Biol Chem 282:29284–29295PubMed CrossRef
    190.Alcendor DJ, Charest AM, Zhu WQ, Vigil HE, Knobel SM (2012) Infection and upregulation of proinflammatory cytokines in human brain vascular pericytes by human cytomegalovirus. J Neuroinflammation 9:95PubMed PubMedCentral CrossRef
    191.Kossmann T, Morganti-Kossmann MC, Orenstein JM, Britt WJ, Wahl SM, Smith PD (2003) Cytomegalovirus production by infected astrocytes correlates with transforming growth factor-beta release. J Infect Dis 187:534–541PubMed CrossRef
    192.Cheeran M, Hu S, Yager S, Gekker G, Peterson P, Lokensgard J (2001) Cytomegalovirus induces cytokine and chemokine production differentially in microglia and astrocytes: antiviral implications. J Neurovirol 7:135–147PubMed CrossRef
    193.Orlikowski D, Porcher R, Sivadon-Tardy V, Quincampoix J, Raphaël JC, Durand Raphaël JC, Durand Gaillard JL, Gault E (2011) Guillain–Barr’e syndrome following primary cytomegalovirus infection: a prospective cohort study. Clin Infect Dis 52:837–844PubMed CrossRef
    194.Steininger C, Seiser A, Gueler N, Puchhammer-Stöckl E, Aberle S, Stanek G, Popow-Kraupp T (2007) Primary cytomegalovirus infection in patients with Guillain-Barr’e syndrome. J Neuroimmunol 183:214–219PubMed CrossRef
    195.Cook C (2007) Cytomegalovirus reactivation in“ immunocompetent” patients: a call for scientific prophylaxis. J Infect Dis 196:1273–1275PubMed CrossRef
    196.Ogawa-Goto K, Ueno T, Oshima K, Yamamoto H, Sasaki J, Fujita K, Sata T, Taniguchi S, Kanda Y, Katano H (2012) Detection of active human cytomegalovirus by the promyelocytic leukemia body assay in cultures of PBMCs from patients undergoing hematopoietic stem cell transplantation. J Med Virol 84:479–486PubMed CrossRef
    197.Chandra A, Keilp J, Fallon B (2013) Correlates of perceived health-related quality of life in post-treatment Lyme Encephalopathy. Psychosomatics 54:552–559PubMed CrossRef
    198.Johnson L, Wilcox S, Mankoff J, Stricker R (2014) Severity of chronic Lyme disease compared to other chronic conditions: a quality of life survey. Peer J 2, e322PubMed PubMedCentral CrossRef
    199.Eikeland R, Mygland Å, Herlofson K, Ljostad U (2013) Risk factors for a non-favorable outcome after treated European neuroborreliosis. Acta Neurol Scand 127:154–160PubMed CrossRef
    200.Hildenbrand P, Craven D, Jones R, Nemeskal P (2009) Lyme neuroborreliosis: manifestations of a rapidly emerging zoonosis. AJNR Am J Neuroradiol 30:1079–1087PubMed CrossRef
    201.Rupprecht T, Koedel U, Fingerle V, Pfister H (2008) The pathogenesis of Lyme neuroborreliosis: from infection to inflammation. Mol Med 14:205–212PubMed PubMedCentral
    202.Kraiczy P, Skerka C, Kirschfink M, Zipfel P, Brade V (2002) Immune evasion of Borrelia burgdorferi: insufficient killing of the pathogens by complement and antibody. Int J Med Microbiol 291:141–146PubMed CrossRef
    203.Strle K, Drouin E, Shen S, El Khoury J, McHugh G, Ruzic-Sabljic E, Strle F, Steere AC (2009) Borrelia burgdorferi stimulates macrophages to secrete higher levels of cytokines and chemokines than Borrelia afzelii or Borrelia garinii. J Infect Dis 200:1936–1943PubMed PubMedCentral CrossRef
    204.Sandholm K, Henningsson A, Save S, Bergstrom S, Forsberg P, Jonsson N, Ernerudh J, Ekdahl KN (2014) Early cytokine release in response to live Borrelia burgdorferi Sensu Lato spirochetes is largely complement independent. Plos One 9, e108013PubMed PubMedCentral CrossRef
    205.Hirschfeld M, Kirschning C, Schwandner R, Wesche H, Weis J, Wooten R, Weis J (1999) Cutting edge: inflammatory signaling by Borrelia burgdorferi lipoproteins is mediated by toll-like receptor 2. J Immunol 163:2382–2386PubMed
    206.Dennis V, Dixit S, O’Brien S, Alvarez X, Pahar B, Philipp M (2009) Live Borrelia burgdorferi spirochetes elicit inflammatory mediators from human monocytes via the Toll-like receptor signaling pathway. Infect Immun 77:1238–1245PubMed PubMedCentral CrossRef
    207.Cervantes J, Dunham-Ems S, La Vake C, Petzke M, Sahay B, Sellati TJ, Radolf JD, Salazar JC (2011) Phagosomal signaling by Borrelia burgdorferi in human monocytes involves Toll-like receptor (TLR) 2 and TLR8 cooperativity and TLR8-mediated induction of IFN-beta. Proc Natl Acad Sci U S A 108:3683–3688PubMed PubMedCentral CrossRef
    208.Love A, Schwartz I, Petzke M (2014) Borrelia burgdorferi RNA induces type I and III interferons via Toll-like receptor 7 and contributes to production of NF-$kappa$B-dependent cytokines. Infect Immun 82:2405–2416PubMed PubMedCentral CrossRef
    209.Cruz A, Moore M, La Vake C, Eggers C, Salazar J, Radolf J (2008) Phagocytosis of Borrelia burgdorferi, the Lyme disease spirochete, potentiates innate immune activation and induces apoptosis in human monocytes. Infect Immun 76:56–70PubMed PubMedCentral CrossRef
    210.Cervantes J, Hawley K, Benjamin S, Weinerman B, Luu S, Salazar J (2014) Phagosomal TLR signaling upon Borrelia burgdorferi infection. Front Cell Infect Microbiol 4:55PubMed PubMedCentral
    211.Ligor M, Olszowy P, Buszewski B (2012) Application of medical and analytical methods in Lyme borreliosis monitoring. Anal Bioanal Chem 402:2233–2248PubMed PubMedCentral CrossRef
    212.Łuczaj W, Moniuszko A, Rusak M, Pancewicz S, Zajkowska J, Skrzydlewska E (2011) Lipid peroxidation products as potential bioindicators of Lyme arthritis. Eur J Clin Microbiol Infect Dis 30:415–422PubMed CrossRef
    213.Ratajczak-Wrona W, Jabłońska E, Pancewicz SA, Zajkowska J, Garley M, Iżycka-Herman A, Sawko Ł (2013) Evaluation of serum levels of nitric oxide and its biomarkers in patients with Lyme borreliosis. Prog Health Sci 3:26–32
    214.Bhattacharjee A, Oeemig J, Kolodziejczyk R, Meri T, Kajander T, Lehtinen MJ, Iwaï H, Jokiranta TS, Goldman A (2013) Structural basis for complement evasion by Lyme disease pathogen Borrelia burgdorferi. J Biol Chem 288:18685–18695PubMed PubMedCentral CrossRef
    215.Parthasarathy G, Philipp M (2014) The MEK/ERK pathway is the primary conduit for Borrelia burgdorferi-induced inflammation and P53-mediated apoptosis in oligodendrocytes. Apoptosis 19:76–89PubMed PubMedCentral CrossRef
    216.Ramesh G, Borda J, Dufour J, Kaushal D, Ramamoorthy R, Lackner A, Philipp M (2008) Interaction of the Lyme disease spirochete Borrelia burgdorferi with brain parenchyma elicits inflammatory mediators from glial cells as well as glial and neuronal apoptosis. Am J Pathol 173:1415–1427PubMed PubMedCentral CrossRef
    217.Ramesh G, Santana-Gould L, Inglis F, England J, Philipp M (2013) The Lyme disease spirochete Borrelia burgdorferi induces inflammation and apoptosis in cells from dorsal root ganglia. J Neuroinflammation 10:88PubMed PubMedCentral CrossRef
    218.Myers T, Kaushal D, Philipp M (2009) Microglia are mediators of Borrelia burgdorferi–induced apoptosis in SH-SY5Y neuronal cells. PLoS Pathog 5, e1000659PubMed PubMedCentral CrossRef
    219.Rasley A, Anguita J, Marriott I (2002) Borrelia burgdorferi induces inflammatory mediator production by murine microglia. J Neuroimmunol 130:22–31PubMed CrossRef
    220.Miklossy J, Kasas S, Zurn A, McCall S, Yu S, McGeer P (2008) Persisting atypical and cystic forms of Borrelia burgdorferi and local inflammation in Lyme neuroborreliosis. J Neuroinflammation 5:1–18CrossRef
    221.Henningsson AJ, Christiansson M, Tjernberg I, Löfgren S, Matussek A (2014) Laboratory diagnosis of Lyme neuroborreliosis: a comparison of three CSF anti-Borrelia antibody assays. Eur J Clin Microbiol Infect Dis 33:797–803PubMed PubMedCentral CrossRef
    222.Eshoo MW, Crowder CC, Rebman AW, Rounds MA, Matthews HE, Picuri JM, Soloski MJ, Ecker DJ, Schutzer SE, Aucott JN (2012) Direct molecular detection and genotyping of Borrelia burgdorferi from whole blood of patients with early Lyme disease. PLoS One 7, e36825PubMed PubMedCentral CrossRef
    223.Miklossy J (2011) Alzheimer’s disease - a neurospirochetosis. Analysis of the evidence following Koch’s and Hill’s criteria. J Neuroinflammation 8:90PubMed PubMedCentral CrossRef
    224.Crago BR, Gray MR, Nelson LA, Davis M, Arnold L, Thrasher JD (2003) Psychological, neuropsychological and electrocortical effects of mixed mold exposure. Arch Environ Health 58:452–463PubMed CrossRef
    225.Baldo J, Ahmad L, Ruff R (2002) Neuropsychological performance of patients following mold exposure. Appl Neuropsychol 9:193–202PubMed CrossRef
    226.Kilburn KH (2002) Inhalation of molds and mycotoxins. Eur J Oncol 7:197–202
    227.Hope J (2013) A review of the mechanism of injury and treatment approaches for illness resulting from exposure to water-damaged buildings, mold, and mycotoxins. Sci World J 2013:767482CrossRef
    228.Brasel TL, Douglas DR, Wilson SC, Straus DC (2005) Detection of airborne Stachybotrys chartarum macrocyclic trichothecene mycotoxins on particulates smaller than conidia. Appl Environ Microbiol 71:114–122PubMed PubMedCentral CrossRef
    229.Brasel TL, Martin JM, Carriker CG, Wilson SC, Straus DC (2005) Detection of airborne Stachybotrys chartarum macrocyclic trichothecene mycotoxins in the indoor environment. Appl Environ Microbiol 71:7376–7388PubMed PubMedCentral CrossRef
    230.Cho S-H, Seo S-C, Schmechel D, Grinshpun SS, Reponen T (2005) Aerodynamic characteristics and respiratory deposition of fungal fragments. Atmos Environ 39:5454–5465CrossRef
    231.Charpin-Kadouch C, Maurel G, Felipo R, Queralt J, Ramadour M, Dumon H, Garans M, Botta A, Charpin D (2006) Mycotoxin identification in moldy dwellings. J Appl Toxicol 26:475–479PubMed CrossRef
    232.Górny RL, Reponen T, Willeke K, Schmechel D, Robine E, Boissier M, Grinshpun SA (2002) Fungal fragments as indoor air biocontaminants. Appl Environ Microbiol 68:3522–3531PubMed PubMedCentral CrossRef
    233.Creasia DA, Thurman JD, Jones LJ 3rd, Nealley ML, York CG, Wannemacher RW Jr, Bunner DL (1987) Acute inhalation toxicity of T-2 mycotoxin in mice. Fundam Appl Toxicol 8:230–235PubMed CrossRef
    234.Brasel TL, Campbell AW, Demers RE, Ferguson BS, Fink J, Vojdani A, Wilson SC, Straus DC (2004) Detection of trichothecene mycotoxins in sera from individuals exposed to Stachybotrys chartarum in indoor environments. Arch Environ Health 59:317–323PubMed
    235.Rocha O, Ansari K, Doohan FM (2005) Effects of trichothecene mycotoxins on eukaryotic cells: a review. Food Addit Contam 22:369–378PubMed CrossRef
    236.Zajtchuk R, Bellamy RF (1997) Textbook of military medicine. Borden Institute, Washington
    237.Karunasena E, Larrañaga MD, Simoni JS, Douglas DR, Straus DC (2010) Building-associated neurological damage modeled in human cells: a mechanism of neurotoxic effects by exposure to mycotoxins in the indoor environment. Mycopathologia 170:377–390PubMed CrossRef
    238.Chung YJ, Yang GH, Islam Z, Pestka JJ (2003) Up-regulation of macrophage inflammatory protein-2 and complement 3A receptor by the trichothecenes deoxynivalenol and satratoxin G. Toxicology 186:51–65PubMed CrossRef
    239.Moon Y, Pestka JJ (2003) Deoxynivalenol-induced mitogen-activated protein kinase phosphorylation and IL-6 expression in mice suppressed by fish oil. J Nutr Biochem 14:717–726PubMed CrossRef
    240.Moon Y, Uzarski R, Pestka JJ (2003) Relationship of trichothecene structure to COX-2 induction in the macrophage: selective action of type B (8-keto) trichothecenes. J Toxicol Environ Health A 66:1967–1983PubMed CrossRef
    241.Pestka JJ, Zhou HR, Moon Y, Chung YJ (2004) Cellular and molecular mechanisms for immune modulation by deoxynivalenol and other trichothecenes: unraveling a paradox. Toxicol Lett 153:61–73PubMed CrossRef
    242.Zhou HR, Islam Z, Pestka JJ (2003) Rapid, sequential activation of mitogen-activated protein kinases and transcription factors precedes proinflammatory cytokine mRNA expression in spleens of mice exposed to the trichothecene vomitoxin. Toxicol Sci 72:130–142PubMed CrossRef
    243.Zhou HR, Jia Q, Pestka JJ (2005) Ribotoxic stress response to the trichothecene deoxynivalenol in the macrophage involves the SRC family kinase Hck. Toxicol Sci 85:916–926PubMed CrossRef
    244.Edmondson DA, Barrios CS, Brasel TL, Straus DC, Kurup VP, Fink JN (2009) Immune response among patients exposed to molds. Int J Mol Sci 10:5471–5484PubMed PubMedCentral CrossRef
    245.Gray MR, Thrasher JD, Crago R, Madison RA, Campbell AW, Vojdani A (2003) Mixed mold exposure: immunological changes in humans with exposure in water damaged buildings. Arch Environ Health 58:410–420PubMed
    246.Campbell AW, Thrasher JD, Madison RA, Vojdani A, Gray MR, Johnson A (2003) Neural antigen autoantibodies and neurophysiology abnormalities in patients exposed to moulds in water-damaged buildings. Arch Environ 58:464–474CrossRef
    247.Sorensen B, Streib JE, Strand M, Make B, Giclas PC, Fleshner M, Jones JF (2003) Complement activation in a model of chronic fatigue syndrome. J Allergy Clin Immunol 112:397–403PubMed CrossRef
    248.Thrasher JD, Gray MR, Kilburn KH, Dennis DP, Yu A (2012) A water-damaged home and health of occupants: a case study. J Environ Public Health 2012:312836PubMed PubMedCentral CrossRef
    249.Liu J, Wang Y, Cui J, Xing L, Shen H, Wu S, Lian H, Wang J, Yan X, Zhang X (2012) Ochratoxin A induces oxidative DNA damage and G1 phase arrest in human peripheral blood mononuclear cells in vitro. Toxicol Lett 211:164–171PubMed CrossRef
    250.Doi K, Uetsuka K (2011) Mechanisms of mycotoxin-induced neurotoxicity through oxidative stress-associated pathways. Int J Mol Sci 12:5213–5237PubMed PubMedCentral CrossRef
    251.Bouslimi A, Ouannes Z, Golli EE, Bouaziz C, Hassen W, Bacha H (2008) Cytotoxicity and oxidative damage in kidney cells exposed to the mycotoxins ochratoxin a and citrinin: individual and combined effects. Toxicol Mech Methods 18:341–349PubMed CrossRef
    252.Islam Z, Amuzie CJ, Harkema JR, Pestka JJ (2007) Neurotoxicity and inflammation in the nasal airways of mice exposed to the macrocyclic trichothecene mycotoxin roridin a: kinetics and potentiation by bacterial lipopolysaccharide coexposure. Toxicol Sci 98:526–541PubMed CrossRef
    253.Jussila J, Komulainen H, Kosma VM, Nevalainen A, Pelkonen J, Hirvonen MR (2002) Spores of Aspergillus versicolor isolated from indoor air of a moisture-damaged building provoke acute inflammation in mouse lungs. Inhal Toxicol 14:1261–1277PubMed CrossRef
    254.Cavin C, Delatour T, Marin-Kuan M, Fenaille F, Holzhäuser D, Guignard G, Bezençon C, Piguet D, Parisod V, Richoz-Payot J, Schilter B (2009) Ochratoxin A-mediated DNA and protein damage: roles of nitrosative and oxidative stresses. Toxicol Sci 110:84–94PubMed CrossRef
    255.Zhang X, Jiang L, Geng C, Cao J, Zhong L (2009) The role of oxidative stress in deoxynivalenol-induced DNA damage in HepG2 cells. Toxicon 54:513–518PubMed CrossRef
    256.Roberts RA, Laskin DL, Smith CV, Robertson FM, Allen EM, Doorn JA, Slikker W (2009) Nitrative and oxidative stress in toxicology and disease. Toxicol Sci 112:4–16PubMed PubMedCentral CrossRef
    257.Cremer B, Soja A, Sauer JA, Damm M (2012) Pro-inflammatory effects of ochratoxin A on nasal epithelial cells. Eur Arch Otorhinolaryngol 269:1155–1161PubMed CrossRef
    258.Hoehler D, Marquardt RR, McIntosh AR, Hatch GM (1997) Induction of free radicals in hepatocytes, mitochondria and microsomes of rats by ochratoxin A and its analogs. Biochim Biophys Acta 1357:225–233PubMed CrossRef
    259.Sajan MP, Satav JG, Battacharya RK (1997) Effect of aflatoxin B1 in vitro on rat liver mitochondrial respiratory functions. Indian J Exper Biol 35:1187–1190
    260.Bin-Umer MA, McLaughlin JE, Basu D, McCormick S, Tumer NE (2011) Trichothecene mycotoxins inhibit mitochondrial translation–implication for the mechanism of toxicity. Toxins (Basel) 3:1484–1501CrossRef
    261.Domijan AM, Abramov AY (2011) Fumonisin B1 inhibits mitochondrial respiration and deregulates calcium homeostasis–implication to mechanism of cell toxicity. Int J Biochem Cell Biol 43:897–904PubMed CrossRef
    262.Kim HY, Jung YH, Hong K, Jang GC, Seo JH, Kwon JW, Kim BJ, Kim HB, Lee SY, Song DJ, Kim WK, Shim JY, Kang MJ, Kim YJ, Yu HS, Hong SJ (2013) Gene-environment interaction between Toll-like receptor 4 and mold exposure in the development of atopic dermatitis in preschool children. Allergy Asthma Respir Dis 1:129–137CrossRef
    263.Lanciotti M, Pigullo S, Lanza T, Dufour C, Caviglia I, Castagnola E (2008) Possible role of toll-like receptor 9 polymorphism in chemotherapy-related invasive mold infections in children with hematological malignancies. Pediatr Blood Cancer 50:944PubMed CrossRef
    264.Ramirez-Ortiz ZG, Specht CA, Wang JP, Lee CK, Bartholomeu DC, Gazzinelli RT, Levitz SM (2008) Toll-like receptor 9-dependent immune activation by unmethylated CpG motifs in Aspergillus fumigatus DNA. Infect Immun 76:2123–2129PubMed PubMedCentral CrossRef
    265.Bhan U, Newstead MJ, Zeng X, Podsaid A, Goswami M, Ballinger MN, Kunkel SL, Standiford TJ (2013) TLR9-dependent IL-23/IL-17 is required for the generation of Stachybotrys chartarum-induced hypersensitivity pneumonitis. J Immunol 190:349–356PubMed PubMedCentral CrossRef
    266.Larypoor M, Bayat M, Zuhair MH, Akhavan Sepahy A, Amanlou M (2013) Evaluation of the number of CD4(+) CD25(+) FoxP3(+) Treg cells in normal mice exposed to AFB1 and treated with aged garlic extract. Cell J 15:37–44PubMed PubMedCentral
    267.Azcona-Olivera JI, Ouyang Y, Murtha J, Chu FS, Pestka JJ (1995) Induction of cytokine mRNAs in mice after oral exposure to the trichothecene vomitoxin (deoxynivalenol): relationship to toxin distribution and protein synthesis inhibition. Toxicol Appl Pharmacol 133:109–120PubMed CrossRef
    268.Pinton P, Oswald IP (2014) Effect of deoxynivalenol and other Type B trichothecenes on the intestine: a review. Toxins (Basel) 6:1615–1643CrossRef
    269.Cano PM, Seeboth J, Meurens F, Cognie J, Abrami R, Oswald IP, Guzylack-Piriou L (2013) Deoxynivalenol as a new factor in the persistence of intestinal inflammatory diseases: an emerging hypothesis through possible modulation of Th17-mediated response. PLoS One 8, e53647PubMed PubMedCentral CrossRef
    270.Pestka JJ, Amuzie CJ (2008) Tissue distribution and proinflammatory cytokine gene expression following acute oral exposure to deoxynivalenol: comparison of weanling and adult mice. Food Chem Toxicol 46:2826–2831PubMed PubMedCentral CrossRef
    271.Amuzie CJ, Shinozuka J, Pestka JJ (2009) Induction of suppressors of cytokine signaling by the trichothecene deoxynivalenol in the mouse. Toxicol Sci 111:277–287PubMed PubMedCentral CrossRef
    272.Maresca M, Yahi N, Younes-Sakr L, Boyron M, Caporiccio B, Fantini J (2008) Both direct and indirect effects account for the pro-inflammatory activity of enteropathogenic mycotoxins on the human intestinal epithelium: stimulation of interleukin-8 secretion, potentiation of interleukin-1beta effect and increase in the transepithelial passage of commensal bacteria. Toxicol Appl Pharmacol 228:84–92PubMed CrossRef
    273.Maes M, Ringel K, Kubera M, Anderson G, Morris G, Galecki P, Geffard M (2013) In myalgic encephalomyelitis/chronic fatigue syndrome, increased autoimmune activity against 5-HT is associated with immuno-inflammatory pathways and bacterial translocation. J Affect Disord 150:223–230PubMed CrossRef
    274.Maes M, Mihaylova I, Leunis JC (2007) Increased serum IgA and IgM against LPS of enterobacteria in chronic fatigue syndrome (CFS): indication for the involvement of gram-negative enterobacteria in the etiology of CFS and for the presence of an increased gut-intestinal permeability. J Affect Disord 99:237–240PubMed CrossRef
    275.Akbari P, Braber S, Gremmels H, Koelink PJ, Verheijden KA, Garssen J, Fink-Gremmels J (2014) Deoxynivalenol: a trigger for intestinal integrity breakdown. FASEB J 28:2414–2429PubMed CrossRef
    276.Pinton P, Nougayrede JP, del Rio JC, Moreno C, Marin DE, Ferrier L, Bracarense AP, Kolf-Clauw M, Oswald IP (2009) The food contaminant deoxynivalenol, decreases intestinal barrier permeability and reduces claudin expression. Toxicol Appl Pharmacol 237:41–48PubMed CrossRef
    277.Van De Walle J, Sergent T, Piront N, Toussaint O, Schneider YJ, Larondelle Y (2010) Deoxynivalenol affects in vitro intestinal epithelial cell barrier integrity through inhibition of protein synthesis. Toxicol Appl Pharmacol 245:291–298PubMed CrossRef
    278.Pinton P, Braicu C, Nougayrede JP, Laffitte J, Taranu I, Oswald IP (2010) Deoxynivalenol impairs porcine intestinal barrier function and decreases the protein expression of claudin-4 through a mitogen-activated protein kinase-dependent mechanism. J Nutr 140:1956–1962PubMed CrossRef
    279.Mbandi E, Pestka JJ (2006) Deoxynivalenol and satratoxin G potentiate proinflammatory cytokine and macrophage inhibitory protein 2 induction by Listeria and Salmonella in the macrophage. J Food Prot 69:1334–1339PubMed
    280.Empting LD (2009) Neurologic and neuropsychiatric syndrome features of mold and mycotoxin exposure. Toxicol Ind Health 25:577–581PubMed CrossRef
    281.Rea WJ, Didriksen N, Simon TR, Pan Y, Fenyves EJ, Griffiths B (2003) Effects of toxic exposure to molds and mycotoxins in building-related illnesses. Arch Environ Health 58:399–405PubMed
    282.Kilburn KH (2009) Neurobehavioral and pulmonary impairment in 105 adults with indoor exposure to molds compared to 100 exposed to chemicals. Toxicol Ind Health 25:681–692PubMed CrossRef
    283.Ross GH, Rea WJ, Johnson AR, Hickey DC, Simon TR (1999) Neurotoxicity in single photon emission computed tomography brain scans of patients reporting chemical sensitivities. Toxicol Ind Health 15:415–420PubMed
    284.Shifrin VI, Anderson P (1999) Trichothecene mycotoxins trigger a ribotoxic stress response that activates c-Jun N-terminal kinase and p38 mitogen-activated protein kinase and induces apoptosis. J Biol Chem 274:13985–13992PubMed CrossRef
    285.Eriksen GS, Petterson H, Lund H (2004) Comparative cytotoxicity of deoxynivalenol, nivalenol, triacetylated derivatives and de-epoxy metabolites. Food Chem Toxicol 42:619–624CrossRef
    286.Boyd KE, Fitzpatrick DW, Wilson JR, Wilson LM (1988) Effect of T-2 toxin on brain biogenic monoamines in rats and chickens. Can J Vet Res 52:181–185PubMed PubMedCentral
    287.Wang J, Fiztpatrick DW, Wilson JR (1998) Effects of the trichothecene mycotoxin T-2 toxin on the neurotransmitters and metabolites in discrete areas of the rat brain. Food Chem Toxicol 36:947–953PubMed CrossRef
    288.Galtier P, Paulin F, Eeckhoutte C, Larrieu G (1989) Comparative effects of T-2 toxin and diacetoxyscirpenol on drug metabolizing enzymes in rat tissues. Food Chem Toxicol 27:215–220PubMed CrossRef
    289.Guerre P, Eeckhoutte C, Burgat V, Galtier P (2000) The effects of T-2 toxin exposure on liver drug metabolizing enzymes in rabbit. Food Addit Contam 17:1019–1026PubMed CrossRef
    290.Chaudhary M, Rao PV (2010) Brain oxidative stress after dermal and subcutaneous exposure of T-2 toxin in mice. Food Chem Toxicol 48:3436–3442PubMed CrossRef
    291.Weidner M, Hüwel S, Ebert F, Schwerdtle T, Galla HJ, Humpf HU (2013) Influence of T-2 and HT-2 toxin on the blood–brain barrier in vitro: new experimental hints for neurotoxic effects. PLoS One 8, e60484PubMed PubMedCentral CrossRef
    292.Ravindran J, Agrawal M, Gupta N, Rao PV (2011) Alteration of blood brain barrier permeability by T-2 toxin: Role of MMP-9 and inflammatory cytokines. Toxicology 280:44–52PubMed CrossRef
    293.Andersen B, Nielsen KF, Jarvis BB (2002) Characterization of Stachybotrys from water-damaged buildings based on morphology, growth, and metabolite production. Mycologia 94:392–403PubMed CrossRef
    294.Chung YJ, Zhou HR, Pestka JJ (2003) Transcriptional and posttranscriptional roles for p38 mitogen-activated protein kinase in upregulation of TNF-α expression by deoxynivalenol (vomitoxin). Toxicol Appl Pharmacol 193:188–201PubMed CrossRef
    295.Hope JH, Hope BE (2012) A review of the diagnosis and treatment of Ochratoxin A inhalational exposure associated with human illness and kidney disease including focal segmental glomerulosclerosis. J Environ Public Health 2012:835059PubMed PubMedCentral CrossRef
    296.Sava V, Reunova O, Velasquez A, Harbison R, Sanchez-Ramos J (2006) Acute neurotoxic effects of the fungal netabolite ochratoxin-A. Neurotoxicology 27:82–92PubMed CrossRef
    297.Sava V, Reunova O, Velasquez A, Sanchez-Ramos J (2006) Can low level exposure to ochratoxin-A cause parkinsonism? J Neurol Sci 249:68–75PubMed CrossRef
    298.Gautier JC, Holzhaeuser D, Markovic J, Gremaud E, Schilter B, Turesky RJ (2001) Oxidative damage and stress response from ochratoxin exposure in rats. Free Radic Biol Med 30:1089–1098PubMed CrossRef
    299.Aleo MD, Wyatt RD, Schnellmann RG (1991) Mitochondrial dysfunction is an early event in ochratoxin A but not oosporein toxicity to rat renal proximal tubules. Toxicol Appl Pharmacol 107:73–80PubMed CrossRef
    300.Zhang X, Boesch-Saadatmandi C, Lou Y, Wolffram S, Huebbe P, Rimbach G (2009) Ochratoxin A induces apoptosis in neuronal cells. Genes Nutr 4:41–48PubMed PubMedCentral CrossRef
    301.Zurich MG, Lengacher S, Braissant O, Monnet-Tschudi F, Pellerin L, Honegger P (2005) Unusual astrocyte reactivity caused by the food mycotoxin ochratoxin A in aggregating rat brain cell cultures. Neuroscience 134:771–782PubMed CrossRef
    302.Hong JT, Lee MK, Park KS, Jung KM, Lee RD, Jung HK, Park KL, Yang KJ, Chung YS (2002) Inhibitory effect of peroxisome proliferator-activated receptor gamma agonist on ochratoxin A-induced cytotoxicity and activation of transcription factors in cultured rat embryonic midbrain cells. J Toxicol Environ Health A 65:407–418PubMed CrossRef
    303.Stockmann-Juvala H, Savolainen K (2008) A review of the toxic effects and mechanisms of action of fumonisin B1. Hum Exp Toxicol 27:799–809PubMed CrossRef
    304.Islam Z, Harkema JR, Pestka JJ (2006) Satratoxin G from the black mold Stachybotrys chartarum evokes olfactory sensory neuron loss and inflammation in the murine nose and brain. Environ Health Perspect 114:1099–1107PubMed PubMedCentral CrossRef
    305.Islam Z, Pestka JJ (2006) LPS priming potentiates and prolongs proinflammatory cytokine response to the trichothecene deoxynivalenol in the mouse. Toxicol Appl Pharmacol 211:53–63PubMed CrossRef
    306.Thrasher JD, Crawley S (2009) The biocontaminants and complexity of damp indoor spaces: more than what meets the eyes. Toxicol Ind Health 25:583–615PubMed CrossRef
    307.Alassane-Kpembi I, Kolf-Clauw M, Gauthier T, Abrami R, Abiola FA, Oswald IP, Puel O (2013) New insights into mycotoxin mixtures: the toxicity of low doses of Type B trichothecenes on intestinal epithelial cells is synergistic. Toxicol Appl Pharmacol 272:191–198PubMed CrossRef
    308.Tai JH, Pestka JJ (1988) Synergistic interaction between the trichothecene T-2 toxin and Salmonella typhimurium lipopolysaccharide in C3H/HeN and C3H/HeJ mice. Toxicol Lett 44:191–200PubMed CrossRef
    309.Zhou HR, Harkema JR, Yan D, Pestka JJ (1999) Amplified proinflammatory cytokine expression and toxicity in mice coexposed to lipopolysaccharide and the trichothecene vomitoxin (deoxynivalenol). J Toxicol Environ Health A 57(2):115–136PubMed CrossRef
    310.Islam Z, Pestka JJ (2003) Role of IL-1(beta) in endotoxin potentiation of deoxynivalenol-induced corticosterone response and leukocyte apoptosis in mice. Toxicol Sci 74:93–102PubMed CrossRef
    311.Morris G, Berk M, Galecki P, Maes M (2014) The emerging role of autoimmunity in myalgic encephalomyelitis/chronic fatigue syndrome (ME/cfs). Mol Neurobiol 49:741–756PubMed CrossRef
    312.Morris G, Anderson G, Galecki P, Berk M, Maes M (2013) A narrative review on the similarities and dissimilarities between myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) and sickness behavior. BMC Med 11:64PubMed PubMedCentral CrossRef
    313.Calderón-Garcidueñas L, Azzarelli B, Acuna H, Garcia R, Gambling TM, Osnaya N, Monroy S, DEL Tizapantzi MR, Carson JL, Villarreal-Calderon A, Rewcastle B (2002) Air pollution and brain damage. Toxicol Pathol 30:373–389PubMed CrossRef
    314.Calderón-Garcidueñas L, Mora-Tiscareño A, Ontiveros E, Gómez-Garza G, Barragán-Mejía G, Broadway J, Chapman S, Valencia-Salazar G, Jewells V, Maronpot RR, Henríquez-Roldán C, Pérez-Guillé B, Torres-Jardón R, Herrit L, Brooks D, Osnaya-Brizuela N, Monroy ME, González-Maciel A, Reynoso-Robles R, Villarreal-Calderon R, Solt AC, Engle RW (2008) Air pollution, cognitive deficits and brain abnormalities: a pilot study with children and dogs. Brain Cogn 68:117–127PubMed CrossRef
    315.Calderón-Garcidueñas L, Franco-Lira M, Mora-Tiscareño A, Medina-Cortina H, Torres-Jardón R, Kavanaugh M (2013) Early Alzheimer’s and Parkinson’s disease pathology in urban children: friend versus foe responses—it is time to face the evidence. Biomed Res Int 2013:161687PubMed PubMedCentral CrossRef
  • 作者单位:Gerwyn Morris (1)
    Michael Berk (2) (3)
    Ken Walder (4)
    Michael Maes (2) (5)

    1. Tir Na Nog, Bryn Road seaside 87, Llanelli, SA15 2LW, Wales, UK
    2. IMPACT Strategic Research Centre, School of Medicine, Deakin University, Geelong, Australia
    3. Orygen, The National Centre of Excellence in Youth Mental Health, Department of Psychiatry and The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Australia
    4. Centre for Molecular and Medical Research, School of Medicine, Deakin University, Geelong, Australia
    5. Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
  • 刊物主题:Neurosciences; Neurobiology; Cell Biology; Neurology;
  • 出版者:Springer US
  • ISSN:1559-1182
文摘
Patients who present with severe intractable apparently idiopathic fatigue accompanied by profound physical and or cognitive disability present a significant therapeutic challenge. The effect of psychological counseling is limited, with significant but very slight improvements in psychometric measures of fatigue and disability but no improvement on scientific measures of physical impairment compared to controls. Similarly, exercise regimes either produce significant, but practically unimportant, benefit or provoke symptom exacerbation. Many such patients are afforded the exclusionary, non-specific diagnosis of chronic fatigue syndrome if rudimentary testing fails to discover the cause of their symptoms. More sophisticated investigations often reveal the presence of a range of pathogens capable of establishing life-long infections with sophisticated immune evasion strategies, including Parvoviruses, HHV6, variants of Epstein-Barr, Cytomegalovirus, Mycoplasma, and Borrelia burgdorferi. Other patients have a history of chronic fungal or other biotoxin exposure. Herein, we explain the epigenetic factors that may render such individuals susceptible to the chronic pathology induced by such agents, how such agents induce pathology, and, indeed, how such pathology can persist and even amplify even when infections have cleared or when biotoxin exposure has ceased. The presence of active, reactivated, or even latent Herpes virus could be a potential source of intractable fatigue accompanied by profound physical and or cognitive disability in some patients, and the same may be true of persistent Parvovirus B12 and mycoplasma infection. A history of chronic mold exposure is a feasible explanation for such symptoms, as is the presence of B. burgdorferi. The complex tropism, life cycles, genetic variability, and low titer of many of these pathogens makes their detection in blood a challenge. Examination of lymphoid tissue or CSF in such circumstances may be warranted.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700