用户名: 密码: 验证码:
A numerical design study of chaotic mixing of magnetic particles in a microfluidic bio-separator
详细信息    查看全文
文摘
A two-dimensional numerical investigation into the mixing of magnetic microparticles with bio-cells in a chaotic micromixer is carried out by using a multiphysics finite element analysis package. Fluid and magnetic problems are simulated in steady-state and time-dependent modes, respectively. Intensity of segregation is utilized as the main index to examine the efficiency of the mixer. Trajectories of the particles are used in order to detect chaos in their motion and quantify its extent. Moreover, probability of the collision between particles and target bio-cells is examined as a supplemental index to study the effects of driving parameters on the mixing process. Simulation results reveal that while in some ranges of operating conditions all indices are in good agreement, there are some ranges where they appear to predict contradicting results which is discussed in details. It is found that optimum operating conditions for the system is obtained when the Strouhal number is less than 0.6, which corresponds to the efficiency of about 85% in a mixing length of 500 μm (The mixer design described here is patent pending).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700