用户名: 密码: 验证码:
Contrasting environments shape thermal physiology across the spatial range of the sandhopper Talorchestia capensis
详细信息    查看全文
  • 作者:Simone Baldanzi ; Nicolas F. Weidberg ; Marco Fusi ; Stefano Cannicci…
  • 关键词:Macrophysiology ; ACH ; Thermal sensitivity ; Climatic variability ; Climate change ; Temperature predictability
  • 刊名:Oecologia
  • 出版年:2015
  • 出版时间:December 2015
  • 年:2015
  • 卷:179
  • 期:4
  • 页码:1067-1078
  • 全文大小:1,105 KB
  • 参考文献:Anderson MJ, Gorley RN, Clarke KR (2008) PERMANOVA+ for PRIMER: guide to software and statistical methods. PRIMER-E, Plymouth
    Angilletta MJ Jr (2009) Thermal adaptation: a theoretical and empirical synthesis. Oxford University Press, OxfordCrossRef
    Angilletta MJ, Huey RB, Frazier MR (2010) Thermodynamic effects on organismal performance: is hotter better? Physiol Biochem Zool 83:197-06. doi:10.-086/-48567 CrossRef PubMed
    Baldanzi S, McQuaid CD, Cannicci S, Porri F (2013) Environmental domains and range-limiting mechanisms: testing the Abundant Centre Hypothesis using Southern African sandhoppers. PLoS One 8(1):e54598CrossRef PubMedCentral PubMed
    Bozinovic F, Calosi P, Spicer JI (2011) Physiological correlates of geographic range in animals. Annu Rev Ecol Evol Systt 42:155-79CrossRef
    Brown JH (1984) On the relationship between abundance and distribution of species. Am Nat 124:255-79CrossRef
    Brown JH (1995) Macroecology. University of Chicago Press, Chicago
    Calosi P, Morritt D, Chelazzi G, Ugolini A (2007) Physiological capacity and environmental tolerance in two sandhopper species with contrasting geographical ranges: Talitrus saltator and Talorchestia ugolinii. Mar Biol 151:1647-655CrossRef
    Calosi P, Bilton DT, Spicer JI (2008) Thermal tolerance, acclimatory capacity and vulnerability to global climate change. Biol Lett 4:99-02CrossRef PubMedCentral PubMed
    Chown SL, Gaston KJ (2008) Macrophysiology for a changing world. Proc R Soc B 275:1469-478CrossRef PubMedCentral PubMed
    Clarke A (2004) Is there a universal temperature dependence of metabolism? Funct Ecol 18:252-56CrossRef
    Colwell RK (1974) Predictability, constancy and contingency of periodic phenomena. Ecology 55:1148-153CrossRef
    DeWitt TJ, Scheiner SM (2004) Phenotypic plasticity: functional and conceptual approaches. Oxford University Press, Oxford
    Doney SC, Ruckelshaus M, Duffy JE, Barry JP, Chan F, English CA, Galindo HM, Grebmeier JM, Hollowed AB, Knowlton N, Polovina J, Rabalais NN, Sydeman WJ, Talley LD (2012) Climate change impacts on marine ecosystems. Annu Rev Mar Sci 4:11-7CrossRef
    Enquist BJ, Jordan MA, Brown JH (1995) Connections between ecology, biogeography, and paleobiology: relationship between local abundance and geographic distribution in fossil and recent molluscs. Evol Ecol 9:586-04CrossRef
    Fenberg PB, Rivadeneira MM (2011) Range limits and geographic patterns of abundance of the rocky intertidal owl limpet, Lottia gigantea. J Biogeog 38:2286-298CrossRef
    Fischer K, Karl I (2010) Exploring plastic and genetic responses to temperature variation using copper butterflies. Clim Res 43:17-0CrossRef
    Folguera G, Bast?as DA, Bozinovic F (2009) Impact of experimental thermal amplitude on ectotherm performance: adaptation to climate change variability? Comp Biochem Physiol A 154:389-93CrossRef
    Fusi M, Giomi F, Babbini S, Daffonchio D, McQuaid CD, Porri F, Cannicci S (2015) Thermal specialization across large geographical scales predicts the resilience of mangrove crab populations to global warming. Oikos 124:784-95CrossRef
    Gaitán-Espitia JD, Belén Arias M, Lardies MA, Nespolo RF (2013) Variation in thermal sensitivity and thermal tolerances in an invasive species across a climatic gradient: lessons from the land snail Cornu aspersum. PLoS ONE 8(8):e70662CrossRef PubMedCentral PubMed
    Gaston KJ (2003) The structure and dynamics of geographic ranges. Oxford University Press, Oxford
    Ghalambor CK, McKay JK, Carroll SP, Reznick DN (2007) Adaptive versus non-adaptive phenotypic plasticity and the potential for contemporary adaptation in new environments. Funct Ecol 21:394-07CrossRef
    Gianoli E, Valladares F (2012) Studying phenotypic plasticity: the advantages of a broad approach. Biol J Lin Soc 105:1-CrossRef
    Gilchrist GW (1996) A quantitative genetic analysis of thermal sensitivity in the locomotor performance curve of Aphidius ervi. Evolution 50:1560-572CrossRef
    Gilman SE (2006) The northern geographic range limit of the intertidal limpet Collisella scabra: a test of performance, recruitment, and temperature hypotheses. Ecography 29:709-20CrossRef
    Griffiths CL (1976) Guide to the benthic marine amphipods of Southern Africa. Trustees of the South African Museum, Rustica Press, Cape Town
    Hasanean HM (2004) Wintertime surface temperature in Egypt in relation to the associated atmospheric circulation. Int J Climatol 24:985-99CrossRef
    Helmuth B, Mieszkowska N, Moore P, Hawkins SJ (2006) Living on the edge of two changing worlds: forecasting the responses of rocky intertidal ecosystems to climate change. Annu Rev Ecol Evol Syst 37:373-04CrossRef
    Holt RD (2003) On the evolutionary ecology of species-ranges. Evol Ecol Res 5:159-78
    Huey RB, Berrigan D, Gilchrist GW, Herron JC (1999) Testing the adaptive significance of acclimation: a strong inference approach. Am Zool 39:323-36CrossRef
    Hutchinson GE (1959) Homage to San
  • 作者单位:Simone Baldanzi (1) (2) (6)
    Nicolas F. Weidberg (1) (6)
    Marco Fusi (3)
    Stefano Cannicci (4) (5)
    Christopher D. McQuaid (1)
    Francesca Porri (1) (2)

    1. Coastal Research Group, Department of Zoology and Entomology, Rhodes University, Grahamstown, South Africa
    2. South African Institute for Aquatic Biodiversity (SAIAB), Grahamstown, South Africa
    6. Estación Costera de Investigaciones Marinas (ECIM), Pontificia Universidad Catolica de Chile, Las Cruces, Chile
    3. Department of Food Environmental and Nutritionals Sciences (DeFENS), University of Milan, Milan, Italy
    4. The Swire Institute of Marine Science and The School of Biological Sciences, The University of Hong Kong, Hong Kong, Special Administrative Region, People’s Republic of China
    5. Department of Biology, Università degli Studi di Firenze, Florence, Italy
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Life Sciences
    Ecology
    Plant Sciences
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1432-1939
文摘
Integrating thermal physiology and species range extent can contribute to a better understanding of the likely effects of climate change on natural populations. Generally, broadly distributed species show variation in thermal physiology between populations. Within their distributional ranges, populations at the edges are assumed to experience more challenging environments than central populations (fundamental niche breadth hypothesis). We have investigated differences in thermal tolerance and thermal sensitivity under increasing/decreasing temperatures among geographically separated populations of the sandhopper Talorchestia capensis along the South African coasts. We tested whether the thermal tolerance and thermal sensitivity of T. capensis differ between central and marginal populations using a non-parametric constraint space analysis. We linked thermal sensitivity to environmental history by using historical climatic data to evaluate whether individual responses to temperature could be related to natural long-term fluctuations in air temperatures. Our results demonstrate that there were significant differences in the thermal response of T. capensis populations to both increasing/decreasing temperatures. Thermal sensitivity (for increasing temperatures only) was negatively related to temperature variability and positively related to temperature predictability. Two different models fitted the geographical distribution of thermal sensitivity and thermal tolerance. Our results confirm that widespread species show differences in physiology among populations by providing evidence of contrasting thermal responses in individuals subject to different environmental conditions at the limits of the species-spatial range. When considering the complex interactions between individual physiology and species ranges, it is not sufficient to consider mean environmental temperatures, or even temperature variability; the predictability of that variability may be critical. Keywords Macrophysiology ACH Thermal sensitivity Climatic variability Climate change Temperature predictability

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700