用户名: 密码: 验证码:
Effects of cutting parameters on tool insert wear in end milling of titanium alloy Ti6Al4V
详细信息    查看全文
  • 作者:Ming Luo ; Jing Wang ; Baohai Wu ; Dinghua Zhang
  • 关键词:tool wear ; Ti6Al4V ; cutting parameter ; hard ; to ; cut material
  • 刊名:Chinese Journal of Mechanical Engineering
  • 出版年:2017
  • 出版时间:January 2017
  • 年:2017
  • 卷:30
  • 期:1
  • 页码:53-59
  • 全文大小:
  • 刊物主题:Mechanical Engineering; Theoretical and Applied Mechanics; Manufacturing, Machines, Tools; Engineering Thermodynamics, Heat and Mass Transfer; Power Electronics, Electrical Machines and Networks; Elec
  • 出版者:Chinese Mechanical Engineering Society
  • ISSN:2192-8258
  • 卷排序:30
文摘
Titanium alloy is a kind of typical hard-to-cut material due to its low thermal conductivity and high strength at elevated temperatures, this contributes to the fast tool wear in the milling of titanium alloys. The influence of cutting conditions on tool wear has been focused on the turning process, and their influence on tool wear in milling process as well as the influence of tool wear on cutting force coefficients has not been investigated comprehensively. To fully understand the tool wear behavior in milling process with inserts, the influence of cutting parameters on tool wear in the milling of titanium alloys Ti6Al4V by using indexable cutters is investigated. The tool wear rate and trends under different feed per tooth, cutting speed, axial depth of cut and radial depth of cut are analyzed. The results show that the feed rate per tooth and the radial depth of cut have a large influence on tool wear in milling Ti6Al4V with coated insert. To reduce tool wear, cutting parameters for coated inserts under experimental cutting conditions are set as: feed rate per tooth less than 0.07 mm, radial depth of cut less than 1.0 mm, and cutting speed sets between 60 and 150 m/min. Investigation on the relationship between tool wear and cutting force coefficients shows that tangential edge constant increases with tool wear and cutter edge chipping can lead to a great variety of tangential cutting force coefficient. The proposed research provides the basic data for evaluating the machinability of milling Ti6Al4V alloy with coated inserts, and the recommend cutting parameters can be immediately applied in practical production.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700