用户名: 密码: 验证码:
Multilevel control of glucose homeostasis by adenylyl cyclase 8
详细信息    查看全文
  • 作者:Matthieu Raoux (1) (2)
    Pierre Vacher (2) (3)
    Julien Papin (1) (4)
    Alexandre Picard (5)
    Elzbieta Kostrzewa (6)
    Anne Devin (2) (7)
    Julien Gaitan (1) (2)
    Isabelle Limon (8)
    Martien J. Kas (6)
    Christophe Magnan (5)
    Jochen Lang (1) (2)

    1. Universit茅 de Bordeaux
    ; CNRS UMR 5248 ; Chimie et Biologie des Membranes et Nano-objets ; Batiment B14 ; All茅e Geoffrey St Hilaire ; CS90063 ; F-33615 ; Pessac ; France
    2. Universit茅 de Bordeaux
    ; Bordeaux ; France
    3. Inserm Unit茅 U 916
    ; Institut Bergoni茅 ; Bordeaux ; France
    4. Laboratoire de Pharmacodynamie et de Th茅rapeutique
    ; Facult茅 de M茅decine ; Universit茅 Libre de Bruxelles ; Bruxelles ; Belgium
    5. BFA-Unit茅 de Biologie Fonctionnelle et Adaptative鈥揢MR CNRS 8251
    ; Universit茅 Paris-Diderot ; Paris ; France
    6. Department of Translational Neuroscience
    ; Brain Center Rudolf Magnus ; University Medical Centre Utrecht ; Utrecht ; the Netherlands
    7. Institut de Biochimie et G茅n茅tique Cellulaires
    ; UMR CNRS 5095 ; Bordeaux ; France
    8. Universit茅 Pierre et Marie Curie
    ; UR4 Aging ; Stress and Inflammation ; Paris ; France
  • 关键词:Adenylyl cyclase ; Diabetes ; Glucose homeostasis ; Insulin secretion ; Intracellular calcium ; Islets of Langerhans
  • 刊名:Diabetologia
  • 出版年:2015
  • 出版时间:April 2015
  • 年:2015
  • 卷:58
  • 期:4
  • 页码:749-757
  • 全文大小:478 KB
  • 参考文献:1. Ashcroft, FM, Rorsman, P (2012) Diabetes mellitus and the beta cell: the last ten years. Cell 148: pp. 1160-1171 CrossRef
    2. Dyachok, O, Idevall-Hagren, O, Sagetorp, J (2008) Glucose-induced cyclic AMP oscillations regulate pulsatile insulin secretion. Cell Metab 8: pp. 26-37 CrossRef
    3. Kaihara, KA, Dickson, LM, Jacobson, DA (2013) beta-cell-specific protein kinase A activation enhances the efficiency of glucose control by increasing acute-phase insulin secretion. Diabetes 62: pp. 1527-1536 CrossRef
    4. Seino, S (2012) Cell signalling in insulin secretion: the molecular targets of ATP, cAMP and sulfonylurea. Diabetologia 55: pp. 2096-2108 CrossRef
    5. Chan, O, Sherwin, RS (2012) Hypothalamic regulation of glucose-stimulated insulin secretion. Diabetes 61: pp. 564-565 CrossRef
    6. Roger, B, Papin, J, Vacher, P (2011) Adenylyl cyclase 8 is central to glucagon-like peptide 1 signalling and effects of chronically elevated glucose in rat and human pancreatic beta cells. Diabetologia 54: pp. 390-402 CrossRef
    7. Delmeire, D, Flamez, D, Hinke, SA, Cali, JJ, Pipeleers, D, Schuit, F (2003) Type VIII adenylyl cyclase in rat beta cells: coincidence signal detector/generator for glucose and GLP-1. Diabetologia 46: pp. 1383-1393 CrossRef
    8. Halls, ML, Cooper, DM (2011) Regulation by Ca2+-signaling pathways of adenylyl cyclases. Cold Spring Harb Perspect Biol 3: pp. a004143 CrossRef
    9. Hu, B, Nakata, H, Gu, C, Beer, T, Cooper, DM (2002) A critical interplay between Ca2+ inhibition and activation by Mg2+ of AC5 revealed by mutants and chimeric constructs. J Biol Chem 277: pp. 33139-33147 CrossRef
    10. Katsushika, S, Chen, L, Kawabe, J (1992) Cloning and characterization of a sixth adenylyl cyclase isoform: types V and VI constitute a subgroup within the mammalian adenylyl cyclase family. Proc Natl Acad Sci U S A 89: pp. 8774-8778 CrossRef
    11. Liu, Z, Yan, SF, Walker, JR (2007) Study of gene function based on spatial co-expression in a high-resolution mouse brain atlas. BMC Syst Biol 1: pp. 19 CrossRef
    12. Kose, H, Bando, Y, Izumi, K, Yamada, T, Matsumoto, K (2007) Epistasis between hyperglycemic QTLs revealed in a double congenic of the OLETF rat. Mamm Genome 18: pp. 609-615 CrossRef
    13. Su, Z, S-w, T, Szatkiewicz, J, Shen, Y, Paigen, B (2008) Candidate genes for plasma triglyceride, FFA, and glucose revealed from an intercross between inbred mouse strains NZB/B1NJ and NZW/LacJ. J Lipid Res 49: pp. 1500-1510 CrossRef
    14. Takeshita, S, Moritani, M, Kunika, K, Inoue, H, Itakura, M (2006) Diabetic modifier QTLs identified in F2 intercrosses between Akita and A/J mice. Mamm Genome 17: pp. 927-940 CrossRef
    15. Muglia, LM, Schaefer, ML, Vogt, SK, Gurtner, G, Imamura, A, Muglia, LJ (1999) The 5'-flanking region of the mouse adenylyl cyclase type VIII gene imparts tissue-specific expression in transgenic mice. J Neurosci 19: pp. 2051-2058
    16. Reed, SE, Staley, EM, Mayginnes, JP, Pintel, DJ, Tullis, GE (2006) Transfection of mammalian cells using linear polyethylenimine is a simple and effective means of producing recombinant adeno-associated virus vectors. J Virol Methods 138: pp. 85-98 CrossRef
    17. Zolotukhin, S (2005) Production of recombinant adeno-associated virus vectors. Hum Gene Ther 16: pp. 551-557 CrossRef
    18. Schaefer, ML, Wong, ST, Wozniak, DF (2000) Altered stress-induced anxiety in adenylyl cyclase type VIII-deficient mice. J Neurosci 20: pp. 4809-4820
    19. Lamy, CM, Sanno, H, Labouebe, G (2014) Hypoglycemia-activated GLUT2 neurons of the nucleus tractus solitarius stimulate vagal activity and glucagon secretion. Cell Metab 19: pp. 527-538 CrossRef
    20. Karaca, M, Castel, J, Tourrel-Cuzin, C (2009) Exploring functional beta-cell heterogeneity in vivo using PSA-NCAM as a specific marker. PLoS ONE 4: pp. e5555 CrossRef
    21. Raoux, M, Bornat, Y, Quotb, A, Catargi, B, Renaud, S, Lang, J (2012) Non-invasive long-term and real-time analysis of endocrine cells on micro-electrode arrays. J Physiol 590: pp. 1085-1091 CrossRef
    22. Nguyen, QV, Caro, A, Raoux, M (2013) A novel bioelectronic glucose sensor to process distinct electrical activities of pancreatic beta-cells. Conf Proc IEEE Engl Med Biol Soc 2013: pp. 172-175
    23. Hohmeier, HE, Mulder, H, Chen, G, Henkel-Rieger, R, Prentki, M, Newgard, CB (2000) Isolation of INS-1-derived cell lines with robust ATP-sensitive K+ channel-dependent and -independent glucose-stimulated insulin secretion. Diabetes 49: pp. 424-430 CrossRef
    24. Acin-Perez, R, Salazar, E, Kamenetsky, M, Buck, J, Levin, LR, Manfredi, G (2009) Cyclic AMP produced inside mitochondria regulates oxidative phosphorylation. Cell Metab 9: pp. 265-276 CrossRef
    25. Levin, BE, Magnan, C, Dunn-Meynell, A, Foll, C (2011) Metabolic sensing and the brain: who, what, where, and how?. Endocrinology 152: pp. 2552-2557 CrossRef
    26. Leech, CA, Castonguay, MA, Habener, JF (1999) Expression of adenylyl cyclase subtypes in pancreatic beta-cells. Biochem Biophys Res Commun 254: pp. 703-706 CrossRef
    27. Eizirik, DL, Sammeth, M, Bouckenooghe, T (2012) The human pancreatic islet transcriptome: expression of candidate genes for type 1 diabetes and the impact of pro-inflammatory cytokines. PLoS Genet 8: pp. e1002552 CrossRef
    28. Hodson, DJ, Mitchell, RK, Marselli, L (2014) ADCY5 couples glucose to insulin secretion in human islets. Diabetes 63: pp. 3009-3021 CrossRef
    29. Tian, G, Sol, ER, Xu, Y, Shuai, H, Tengholm, A (2014) Impaired cAMP generation contributes to defective glucose-stimulated insulin secretion after long-term exposure to palmitate. Diabetes.
    30. Ludwig, MG, Seuwen, K (2002) Characterization of the human adenylyl cyclase gene family: cDNA, gene structure, and tissue distribution of the nine isoforms. J Recept Signal Transduct Res 22: pp. 79-110 CrossRef
    31. Charles, MA, Lawecki, J, Pictet, R, Grodsky, GM (1975) Insulin secretion. Interrelationships of glucose, cyclic adenosine 3:5-monophosphate, and calcium. J Biol Chem 250: pp. 6134-6140
    32. Persaud, SJ, Jones, PM, Howell, SL (1990) Glucose-stimulated insulin secretion is not dependent on activation of protein kinase A. Biochem Biophys Res Commun 173: pp. 833-839 CrossRef
    33. Dou H, Wang C, Wu X, et al. Calcium influx activates adenylyl cyclase 8 for sustained insulin secretion in rat pancreatic beta cells. Diabetologia doi 10.1007/s00125-014-3437-z
    34. Chepurny, OG, Kelley, GG, Dzhura, I (2009) PKA-dependent potentiation of glucose-stimulated insulin secretion by Epac activator 8-pCPT-2'-O-Me-cAMP-AM in human islets of Langerhans. Am J Physiol Endocrinol Metab 298: pp. E622-E633 CrossRef
    35. Kitaguchi, T, Oya, M, Wada, Y, Tsuboi, T, Miyawaki, A (2013) Extracellular calcium influx activates adenylate cyclase 1 and potentiates insulin secretion in MIN6 cells. Biochem J 450: pp. 365-373 CrossRef
    36. Defer, N, Marinx, O, Stengel, D (1994) Molecular cloning of the human type VIII adenylyl cyclase. FEBS Lett 351: pp. 109-113 CrossRef
    37. Kang, G, Chepurny, OG, Malester, B (2006) cAMP sensor Epac as a determinant of ATP-sensitive potassium channel activity in human pancreatic beta cells and rat INS-1 cells. J Physiol 573: pp. 595-609 CrossRef
    38. Light, PE, Manning Fox, JE, Riedel, MJ, Wheeler, MB (2002) Glucagon-like peptide-1 inhibits pancreatic ATP-sensitive potassium channels via a protein kinase A- and ADP-dependent mechanism. Mol Endocrinol 16: pp. 2135-2144 CrossRef
    39. Willoughby, D, Everett, KL, Halls, ML (2012) Direct binding between Orai1 and AC8 mediates dynamic interplay between Ca2+ and cAMP signaling. Sci Signal 5: pp. ra29 CrossRef
    40. Tian, G, Tepikin, AV, Tengholm, A, Gylfe, E (2012) cAMP induces stromal interaction molecule 1 (STIM1) puncta but neither Orai1 protein clustering nor store-operated Ca2+ entry (SOCE) in islet cells. J Biol Chem 287: pp. 9862-9872 CrossRef
    41. Zippin, JH, Chen, Y, Straub, SG (2013) CO2/HCO3鈥?and calcium-regulated soluble adenylyl cyclase as a physiological ATP sensor. J Biol Chem 288: pp. 33283-33291 CrossRef
    42. Conti, AC, Maas, JW, Muglia, LM (2007) Distinct regional and subcellular localization of adenylyl cyclases type 1 and 8 in mouse brain. Neuroscience 146: pp. 713-729 CrossRef
    43. Moulder, KL, Jiang, X, Chang, C (2008) A specific role for Ca2+-dependent adenylyl cyclases in recovery from adaptive presynaptic silencing. J Neurosci 28: pp. 5159-5168 CrossRef
    44. Vonholdt, BM, Pollinger, JP, Lohmueller, KE (2010) Genome-wide SNP and haplotype analyses reveal a rich history underlying dog domestication. Nature 464: pp. 898-902 CrossRef
    45. Osundiji, MA, Lam, DD, Shaw, J (2012) Brain glucose sensors play a significant role in the regulation of pancreatic glucose-stimulated insulin secretion. Diabetes 61: pp. 321-328 CrossRef
    46. Paranjape, SA, Chan, O, Zhu, W (2011) Chronic reduction of insulin receptors in the ventromedial hypothalamus produces glucose intolerance and islet dysfunction in the absence of weight gain. Am J Physiol Endocrinol Metab 301: pp. E978-E983 CrossRef
    47. Fonseca, SG, Urano, F, Weir, GC, Gromada, J, Burcin, M (2012) Wolfram syndrome 1 and adenylyl cyclase 8 interact at the plasma membrane to regulate insulin production and secretion. Nat Cell Biol 14: pp. 1105-1112 CrossRef
    48. Mooij-van Malsen, AJ, Lith, HA, Oppelaar, H (2009) Interspecies trait genetics reveals association of Adcy8 with mouse avoidance behavior and a human mood disorder. Biol Psychiatry 66: pp. 1123-1130 CrossRef
    49. McDonald, ML, MacMullen, C, Liu, DJ, Leal, SM, Davis, RL (2012) Genetic association of cyclic AMP signaling genes with bipolar disorder. Transl Psychiatry 2: pp. e169 CrossRef
    50. Calkin, CV, Gardner, DM, Ransom, T, Alda, M (2013) The relationship between bipolar disorder and type 2 diabetes: more than just co-morbid disorders. Ann Med 45: pp. 171-181 CrossRef
  • 刊物类别:Medicine
  • 刊物主题:Medicine & Public Health
    Internal Medicine
    Metabolic Diseases
    Human Physiology
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1432-0428
文摘
Aims/hypothesis Nutrient homeostasis requires integration of signals generated by glucose metabolism and hormones. Expression of the calcium-stimulated adenylyl cyclase ADCY8 is regulated by glucose and the enzyme is capable of integrating signals from multiple pathways. It may thus have an important role in glucose-induced signalling and glucose homeostasis. Methods We used pharmacological and genetic approaches in beta cells to determine secretion and calcium metabolism. Furthermore, Adcy8 knockout mice were characterised. Results In clonal beta cells, inhibitors of adenylyl cyclases or their downstream targets reduced the glucose-induced increase in cytosolic calcium and insulin secretion. This was reproduced by knock-down of ADCY8, but not of ADCY1. These agents also inhibited glucose-induced increase in cytosolic calcium and electrical activity in primary beta cells and similar effects were observed after ADCY8 knock-down. Moreover, insulin secretion was diminished in islets from Adcy8 knockout mice. These mice were glucose intolerant after oral or intraperitoneal administration of glucose whereas their levels of glucagon-like peptide-1 remained unaltered. Finally, we knocked down ADCY8 in the ventromedial hypothalamus to evaluate the need for ADCY8 in the central regulation of glucose homeostasis. Whereas mice fed a standard diet had normal glucose levels, high-fat diet exacerbated glucose intolerance and knock-down mice were incapable of raising their plasma insulin levels. Finally we confirmed that ADCY8 is expressed in human islets. Conclusions/interpretations Collectively, our findings demonstrate that ADCY8 is required for the physiological activation of glucose-induced signalling pathways in beta cells, for glucose tolerance and for hypothalamic adaptation to a high-fat diet via regulation of islet insulin secretion.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700