用户名: 密码: 验证码:
Influence of Magnesium Ion Substitution on Structural and Thermal Behavior of Nanodimensional Hydroxyapatite
详细信息    查看全文
  • 作者:Uma Batra (1)
    Seema Kapoor (2)
    Sonia Sharma (2)
  • 关键词:BET surface area ; hydroxyapatite ; magnesium substitution ; nanopowders ; thermal stability ; β ; tricalcium phosphate
  • 刊名:Journal of Materials Engineering and Performance
  • 出版年:2013
  • 出版时间:June 2013
  • 年:2013
  • 卷:22
  • 期:6
  • 页码:1798-1806
  • 全文大小:639KB
  • 参考文献:1. L.H. Tasker, G.J. Sparey-Taylor, and L.D. Nokes, Applications of Nanotechnology in Orthopaedic, / Clin. Orthop. Relat. Res., 2007, 456, p 243-49 CrossRef
    2. M.P. Ginebra, F.C.M. Driessens, and J.A. Planell, Effect of the Particle Size on the Micro and Nanostructural Features of Calcium Phosphate Cement: A Kinetic Analysis, / Biomaterials, 2004, 25, p 3453-462 CrossRef
    3. H.R.R. Ramay and M. Zhang, Biphasic Calcium Phosphate Nanocomposite Porous Scaffolds for Load-Bearing Bone Tissue Engineering, / Biomaterials, 2004, 25, p 5171-180 CrossRef
    4. J. Huang, Y.W. Lin, X.W. Fu, S.M. Best, R.A. Brooks, N. Rushton, and W. Bonfield, Development of Nanosized Hydroxyapatite Reinforced Composites for Tissue Engineering Scaffolds, / J. Mater. Sci. Mater. Med., 2007, 18, p 2151-157 CrossRef
    5. M. Strnadova, J. Protivinsky, J. Strnad, and Z. Vejsicka, Preparation of Porous Synthetic Nanostructured HA Scaffold, / Key Eng. Mater., 2008, 361-63, p 211-14 CrossRef
    6. M. Vallet-Regi and J.M. Gonzalez-Calbet, Calcium Phosphates as Substitution of Bone Tissues, / Prog. Solid State Chem., 2004, 32, p 1-1 CrossRef
    7. S. Weiner and L. Addadi, Design Strategies in Mineralized Biological Materials, / J. Mater. Chem., 1997, 7, p 689-02 CrossRef
    8. S. Weiner and H.D. Wagner, The Material Bone: Structure-Mechanical Function Relations, / Ann. Rev. Mater. Sci., 1998, 28, p 271-98 CrossRef
    9. R.Z. LeGeros, Calcium Phosphate-Based Osteoinductive Materials, / Chem. Rev., 2008, 108(4742-75), p 3
    10. L. Wang and G.H. Nancollas, Calcium Orthophosphates: Crystallization and Dissolution, / Chem. Rev., 2008, 108, p 4628-669 CrossRef
    11. T. Kirsch, Determinants of Pathological Mineralization: Crystal Deposition Diseases, / Curr. Opin. Rheumatol., 2006, 18, p 174-80 CrossRef
    12. W. Xue, K. Dahlquist, A. Banerjee, A. Bandyopadhyay, and S. Bose, Synthesis and Characterization of Tricalcium Phosphate with Zn and Mg Based Dopants, / J. Mater. Sci. Mater. Med., 2008, 19, p 2669-677 CrossRef
    13. M. Percival, Bone Health & Osteoporosis, / Appl. Nutr. Sci. Rep., 1999, 5, p 1-
    14. R.K. Rude, Magnesium Deficiency; A Cause of Heterogenous Disease in Humans, / J. Bone Miner. Res., 1998, 13, p 749-58 CrossRef
    15. P.N. Kumta, C. Sfeir, D.H. Lee, D. Olton, and D. Choi, Nanostructured Calcium Phosphates for Biomedical Applications: Novel Synthesis and Characterization, / Acta Biomater., 2005, 1, p 65-3 CrossRef
    16. A. Bigi, G. Falini, E. Foresti, M. Gazzano, A. Ripamonti, and N. Roveri, Rietveld Structure Refinements of calcium hydroxylapatite containing magnesium, / Acta Cryst., 1996, B52, p 87-2
    17. A. Yasukawa, S. Ouchi, K. Kandori, and T. Ishikawa, Preparation and Characterization of Magnesium-Calcium Hydroxyapatites, / J. Mater. Chem., 1996, 6, p 1401-405 CrossRef
    18. I.R. Gibson and W. Bonfield, Preparation and Characterization of Magnesium/Carbonate Co-substituted Hydroxyapatites, / J. Mater. Sci. Mater. Med., 2002, 13, p 685-93 CrossRef
    19. E. Landi, G. Logroscino, L. Proietti, A. Tampieri, M. Sandri, and S. Sprio, Biomimetic Mg-Substituted Hydroxyapatite: From Synthesis to in Vivo Behavior, / J. Mater. Sci. Mater. Med., 2008, 19, p 239-47 CrossRef
    20. R. Enderle, F. Gotz-Neunhoeffer, M. Gobbels, F.A. Muller, and P. Greil, Influence of Magnesium Doping on the Phase Transformation Temperature of β-TCP Ceramics Examined by Rietveld Refinement, / Biomaterials, 2005, 26, p 3379-384 CrossRef
    21. S.J. Kalita and H.A. Bhatt, Nanocrystalline Hydroxyapatite Doped With Magnesium And Zinc: Synthesis and Characterization, / Mater. Sci. Eng. C, 2007, 27, p 837-48 CrossRef
    22. D. Lee, C. Sfeir, and P.N. Kumta, Novel In Situ Synthesis and Characterization of Nanostructured Magnesium Substituted β-Tricalcium Phosphate (β-TCMP), / Mater. Sci. Eng. C, 2009, 29, p 69-7 CrossRef
    23. H.S. Ryu, K.S. Hong, J.K. Lee, D.J. Kim, J.H. Lee, B.S. Chang, D.H. Lee, C.K. Lee, and S.S. Chung, Magnesia-Doped HA/Beta-TCP Ceramics and Evaluation of Their Biocompatibility, / Biomaterials, 2004, 25, p 393-01 CrossRef
    24. J.D. Currey, Hierarchies in Biomineral Structures, / Science, 2005, 309(253-5), p 4
    25. S.K. Padmanabhan, A. Balakrishnan, M.C. Chu, Y.J. Lee, T.N. Kim, and S.J. Cho, Sol-gel Synthesis and Characterization of Hydroxyapatite Nanorods, / Particuology, 2009, 7, p 466-70 CrossRef
    26. R. Joseph and K.E. Tanner, Effect of Morphological Features and Surface Area of Hydroxyapatite on the Fatigue Behavior of Hydroxyapatite-Polyethylene Composites, / Biomacromolecules, 2005, 6, p 1021-026 CrossRef
    27. L. Clausen and I. Fabricius, BET Measurements: Outgassing of Minerals, / J. Colloid Interface Sci., 2000, 227, p 7-5 CrossRef
    28. F.B. Ayed, J. Bouaziz, and K. Bouzouita, Calcination and Sintering of Fluorapatite Under Argon Atmosphere, / J. Alloy. Compd., 2001, 322, p 238-45 CrossRef
    29. T.J. Webster, E.A. Massa-Schlueter, J.L. Smith, and E.B. Slamovich, Osteoblast Response to Hydroxyapatite Doped with Divalent and Trivalent Cations, / Biomaterials, 2004, 25, p 2111-121 CrossRef
    30. M.H. Fathi, A. Hanifi, and V. Mortazavi, Preparation and Bioactivity Evaluation of Bone-Like Hydroxyapatite Nano-powder, / J. Mater. Process. Technol., 2008, 202, p 536-42 CrossRef
    31. R. Jenkins and R.L. Snyder, / Introduction to X-ray Powder Diffractometry, Wiley, New York, 1996 CrossRef
    32. J. Marchi, A.C.S. Dantas, P. Greil, J.C. Bressiani, A.H.A. Bressiani, and F.A. Muller, Influence of Mg-Substitution on the Physicochemical Properties of Calcium Phosphate Powders, / Mater. Res. Bull., 2007, 42, p 1040-050 CrossRef
    33. E. Landi, A. Tampieri, G. Celotti, and S. Sprio, Densification Behaviour and Mechanisms of Synthetic Hydroxyapatite, / J. Eur. Ceram. Soc., 2000, 20, p 2377-387 CrossRef
    34. A. Destainville, E. Champio, D. Bernache-Assollant, and E. La Borde, Synthesis, Characterization and Thermal Behaviour of Apatitic Tricalcium Phosphate, / Mater. Chem. Phys., 2003, 80, p 269-77 CrossRef
    35. R. Xin, Y. Leng, J. Chen, and Q. Zhang, A Comparative Study of Calcium Phosphate Formation on Bioceramics In Vitro and In Vivo, / Biomaterials, 2005, 26, p 6477-486 CrossRef
    36. M. Kharaziha and M.H. Fathi, Synthesis and Characterization of Bioactive Forsterite Nano-powder, / Ceram. Int., 2009, 35, p 2449-454 CrossRef
    37. S.H. Kwon, Y.K. Jun, S.H. Hong, and H.E. Kim, Synthesis and Dissolution Behaviour of β-TCP and HA/β-TCP Composite Powders, / J. Eur. Ceram. Soc., 2003, 23, p 1039-045 CrossRef
    38. K. Yoshida, W.N. Kondo, and H. Kita, Effect of Substitutional Monovalent and Divalent Metal Ions on Mechanical Properties of β-Tricalcium Phosphate, / J. Am. Ceram. Soc., 2005, 88, p 2315-318 CrossRef
    39. W.L. Suchanek, K. Byrappa, P. Shuk, R.E. Riman, V.F. Janas, and K.S. TenHuisen, Preparation of Magnesium-Substituted Hydroxyapatite Powders by the Mechanochemical-Hydrothermal Method, / Biomaterials, 2004, 25, p 4647-657 CrossRef
    40. A. Bigi, G. Falini, E. Foresti, M. Gazzano, A. Ripamonti, and N. Roveri, Magnesium Influence on Hydroxyapatite Crystallization, / J. Inorg. Biochem., 1993, 49, p 69-5 CrossRef
    41. S. Kannan, I.A.F. Lemos, J.H.G. Rocha, and J.M.F. Ferreira, Synthesis and Characterization of Magnesium Substituted Biphasic Mixtures of Controlled Hydroxyapatite/β-Tricalcium phosphate Ratios, / J. Solid State Chem., 2005, 178, p 3190-196 CrossRef
    42. A. Mortier, J. Lemaitre, and P.G. Rouxhet, Temperature-Programmed Characterization of Synthetic Calcium-Deficient Phosphate Apatites, / Thermochim. Acta, 1989, 143, p 265-82 CrossRef
    43. S. Kannan and J.M.F. Ferreira, Synthesis and Thermal Stability of Hydroxyapatite-Beta-Tricalcium phosphate Composite with Cosubstituted Sodium, Magnesium and Fluorine, / Chem. Mater., 2006, 18, p 198-03 CrossRef
    44. S. Raynaud, E. Champion, D. Bernache-Assollant, and P. Thomas, Calcium phosphate Apatites with Variable Ca/P Atomic Ratio I: Synthesis, Characterisation and Thermal Stability of Powders, / Biomaterials, 2002, 23, p 1065-072 CrossRef
    45. J.C. Elliot, / Structure and Chemistry of the Apatites and Other Calcium Orthophosphates. Studies in Inorganic Chemistry, Vol 18, Elsevier, Amsterdam, 1994
    46. B.D. Cullity and S.R. Stock, / Elements of X-Ray Diffraction, 3rd ed., Prentice-Hall Inc., Englewood Cliffs, 2001
    47. S. Kannan, J.M. Ventura, and J.M.F. Ferreira, Aqueous Precipitation Method for the Formation of Mg-Stabilized β-Tricalcium phosphate: An X-ray Diffraction Study, / Ceram. Int., 2007, 33, p 637-41 CrossRef
    48. I.V. Fadeev, L.I. Shvorneva, S.M. Barinov, and V.P. Orlovskii, Synthesis and Structure of Magnesium-Substituted Hydroxyapatite, / Inorg. Mater., 2003, 39, p 947-50 CrossRef
    49. I. Mayer, R. Schlam, and J.D.B. Featherstone, Magnesium-Containing Carbonate Apatites, / J. Inorg. Biochem., 1997, 66, p 1- CrossRef
    50. J. Pena and M. Vallet-Regi, Hydroxyapatite, Tricalcium phosphate and Biphasic Materials Prepared by a Liquid Mix Technique, / J. Eur. Ceram. Soc., 2003, 23, p 1687-696 CrossRef
  • 作者单位:Uma Batra (1)
    Seema Kapoor (2)
    Sonia Sharma (2)

    1. Department of Materials & Metallurgical Engineering, PEC University of Technology, Chandigarh, India
    2. University Institute of Chemical Engineering & Technology, Panjab University, Chandigarh, India
  • ISSN:1544-1024
文摘
Hydroxyapatite (HA), incorporating small amount of magnesium, shows attractive biological performance in terms of improved bone metabolism, osteoblast and osteoclast activity, and bone in-growth. This article reports a systematic investigation on the influence of magnesium (Mg) substitution on structural and thermal behavior of nanodimensional HA. HA and Mg-substituted HA nanopowders were synthesized through sol-gel route. The morphology and size of nanopowders were characterized by transmission electron microscopy. The BET surface area was evaluated from N2 adsorption isotherms. Structural analysis and thermal behavior were investigated by means of Fourier transform infrared spectroscopy, x-ray diffraction, thermogravimetry, and differential thermal analysis. As-synthesized powders consisted of flake-like agglomerates of HA and calcium-deficient HA. The incorporation of magnesium in HA resulted in decrease of crystallite size, crystallinity, and lattice parameters a and c and increase in BET surface area. β-tricalcium phosphate formation occured at lower calcination temperature in Mg-substituted HA than HA.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700