用户名: 密码: 验证码:
Double-stranded RNA in the biological control of grain aphid (Sitobion avenae F.)
详细信息    查看全文
  • 作者:Dahai Wang (1) (2)
    Qi Liu (3)
    Xia Li (4)
    Yongwei Sun (1)
    Hui Wang (1)
    Lanqin Xia (1)

    1. Institute of Crop Sciences/The National Key Facility for Crop Gene Resource and Genetic Improvement
    ; Chinese Academy of Agricultural Sciences (CAAS) ; 12 Zhongguanchun South Street ; Beijing ; 10081 ; China
    2. Beijing Autolab Biotechnology Co. Ltd.
    ; Eastern Campus ; Beijing Jiaotong University ; Beijing ; 100081 ; China
    3. The Medical College of Wenzhou
    ; Wenzhou ; 325032 ; China
    4. Institute of Zoology
    ; Chinese Academy of Sciences (CAS) ; 1 Beichen West Road ; Chaoyang District ; Beijing ; 100101 ; China
  • 关键词:Grain aphid (Sitobion avenae F.) ; Transcriptome ; RNA interference (RNAi) ; Wheat (Triticum aestivum L.) ; Aphid control
  • 刊名:Functional & Integrative Genomics
  • 出版年:2015
  • 出版时间:March 2015
  • 年:2015
  • 卷:15
  • 期:2
  • 页码:211-223
  • 全文大小:4,365 KB
  • 参考文献:1. Aqueel, MA, Leather, SR (2011) Effect of nitrogen fertilizer on the growth and survival of Rhopalosiphum padi (L.) and Sitobion avenae (F.) (Homoptera: Aphididae) on different wheat cultivars. Crop Prot 30: pp. 216-221 CrossRef
    2. Awmack, CS, Harrington, R (2000) Elevated CO2 affects the interactions between aphid pests and host plant flowering. Agric For Entomol 2: pp. 57-61 CrossRef
    3. Baum, JA, Bogaert, T, Clinton, W, Heck, GR, Feldmann, P, Ilagan, O, Johnson, S, Plaetinck, G, Munyikwa, T, Pleau, M, Vaughn, T, Roberts, J (2007) Control of coleopteran insect pests through RNA interference. Nat Biotechnol 25: pp. 1322-1326 CrossRef
    4. Bautista, MA, Miyata, T, Miura, K, Tanaka, T (2009) RNA interference-mediated knockdown of a cytochrome P450, CYP6BG1, from the diamondback moth, Plutella xylostella, reduces larval resistance to permethrin. Insect Biochem Mol Biol 39: pp. 38-46 CrossRef
    5. Bhatia, V, Bhattacharya, R, Uniyal, PL, Singh, R, Niranjan, RS (2012) Host generated siRNAs attenuate expression of serine protease Gene in Myzus persicae. PLoS One 7: pp. e46343 CrossRef
    6. Blackman, RL, Eastop, VF (1984) Aphids on the world鈥檚 crops: an identification and information guide. Wiley, New York
    7. Chen, YA, Lin, CC, Wang, CD, Wu, HB, Wang, PI (2007) An optimized procedure greatly improves EST vector contamination removal. BMC Genomics 8: pp. 416 CrossRef
    8. Chevreux, B, Pfisterer, T, Drescher, B, Driesel, AJ, M眉ller, WE, Wetter, T, Suhai, S (2004) Using the miraEST assembler for reliable and automated mRNA transcript assembly and SNP detection in sequenced ESTs. Genome Res 14: pp. 1147-1159 CrossRef
    9. Chou, HH, Michael, HH (2001) DNA sequence quality trimming and vector removal. Bioinformatics 17: pp. 1093-1104 CrossRef
    10. Conesa, A, Gotz, S, Garc铆a-G贸mez, JM, Terol, J, Tal贸n, M, Robles, M (2005) Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21: pp. 3674-3676 CrossRef
    11. Deraison, C, Duportets, L, Gorojankina, T, Rahb, Y, Jouanin, L (2002) Cloning and characterization of a gut-specific cathepsin L from the aphid Aphis gossypii. Insect Mol Biol 13: pp. 265-177
    12. Dzitoyeva, S, Dimitrijevic, N, Manev, H (2001) Intra-abdominal injection of double-stranded RNA into anesthetized adult Drosophila triggers RNA interference in the central nervous system. Mol Psychiatry 6: pp. 665 CrossRef
    13. Filipowicz, W, Bhattacharyya, SN, Sonenberg, N (2008) Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight?. Nat Rev Genet 9: pp. 102-114 CrossRef
    14. Fire, A, Xu, S, Montgomery, M, Kostas, S, Driver, S, Mello, C (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391: pp. 806-811 CrossRef
    15. Gaur, RK, Krupp, G (1993) Enzymatic RNA synthesis with deoxynucleoside 5鈥?O (1-thiotriphosphates). FEBS Lett 315: pp. 56-60 CrossRef
    16. Huvenne, H, Smagghe, G (2010) Mechanisms of dsRNA uptake in insects and potential of RNAi for pest control: a review. J Insect Physiol 56: pp. 227-235 CrossRef
    17. International Aphid Genomics Consortium (2010b) Aphid White Paper II: proposal to complete development of the aphid model. IAGC鈥揥hite Paper II-FINAL VERSION-September 13th 2010.
    Genome sequence of the pea aphid Acyrthosiphon pisum. PLoS Biol 8: pp. e1000313 CrossRef
    18. Jaubert-Possamai, S, Trionnaire, G, Bonhomme, J, Christophides, GK, Rispe, C, Tagu, D (2007) Gene knockdown by RNAi in the pea aphid Acyrthosiphon pisum. BMC Biotechnol 7: pp. 63 CrossRef
    19. Jinek, M, Doudna, JA (2008) A three-dimensional view of the molecular machinery of RNA interference. Nature 457: pp. 405-412 CrossRef
    20. Jose, AM, Hunter, CP (2007) Transport of sequence-specific RNA interference information between cells. Annu Rev Gene 41: pp. 305-330 CrossRef
    21. Lassmann, T, Hayashizaki, Y, Daub, CO (2009) TagDust鈥攁 program to eliminate artifacts from next generation sequencing data. Bioinformatics 25: pp. 2839-2840 CrossRef
    22. Legeai, F, Shigenobu, S, Gauthier, JP, Colbourne, J, Rispe, C, Collin, O, Richards, S, Wilson, ACC, Tagu, D (2010) AphidBase: a centralized bioinformatic resource for annotation of the pea aphid genome. Insect Mol Biol 19: pp. 5-12 CrossRef
    23. Liao, Z, Jia, QD, Li, F, Han, ZJ (2010) Identification of two piwi genes and their expression profile in honeybee, Apis mellifera. Arch Insect Biochem Physiol 74: pp. 91-102
    24. Livak, KJ, Thomas, DS (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2鈭捨斘擟T method. Methods 25: pp. 402-408 CrossRef
    25. Lynch, JA, Desplan, C (2006) A method for parental RNA interference in the wasp Nasonia vitripennis. Nat Protoc 1: pp. 486-494 CrossRef
    26. Mao, YB, Cai, WJ, Wang, JW, Hong, GJ, Tao, XY, Wang, LJ, Huang, YP, Chen, XY (2007) Silencing a cotton bollworm P450 monooxygenase gene by plant-mediated RNAi impairs larval tolerance of gossypol. Nat Biotechnol 25: pp. 1307-1313 CrossRef
    27. Mart铆n, D, Maestro, O, Cruz, J, Man茅-Padr贸s, D, Bell茅s, X (2006) RNAi studies reveal a conserved role for RXR in molting in the cockroach Blattella germanica. Insect Physiol 52: pp. 410-416 CrossRef
    28. Meister, G, Tuschl, T (2004) Mechanisms of gene silencing by double-stranded RNA. Nature 431: pp. 343-349 CrossRef
    29. Meyering-Vos, M, M眉ller, A (2007) A Structure of the sulfakinin cDNA and gene expression from the mediterranean field cricket Gryllus bimaculatus. Insect Mol Biol 16: pp. 445-454 CrossRef
    30. Meyering-Vos, M, Merz, S, Sertkol, M, Hoffmann, KH (2006) Functional analysis of the allatostatin-a type gene in the cricket Gryllus bimaculatus and the armyworm Spodoptera frugiperda. Insect Biochem Mol Biol 36: pp. 492-504 CrossRef
    31. Michel, H, Behr, J, Harrenga, A, Kannt, A (1998) Cytochrome c oxidase: structure and spectroscopy. Annu Rev Bioph Biom 27: pp. 329-356 CrossRef
    32. Morrison WP, Peairs FB (1998) Response model concept and economic impact. Response model for an introduced pest: the Russian wheat aphid. Lanham: MD: Entomol Soc Am.
    33. Mutti, NS, Park, Y, Reese, JC, Reeck, GR (2006) RNAi knockdown of a salivary transcript leading to lethality in the pea aphid, Acyrthosiphon pisum. J Insect Sci 6: pp. 1-7 CrossRef
    34. Nakakita, H, Katsumata, Y, Ozawa, T (1971) The effect of phosphine on respiration of rat liver mitochondria. J Biochem 69: pp. 589-593
    35. Oerke, EC, Dehne, HW, Sch枚nbeck, F, Weber, A (1994) Crop production and crop protection: estimated losses in major food and cash crops. Elsevier, Amsterdam
    36. Pitino, M, Maffei, ME, Coleman, AD, Ridout, CJ, Hogenhout, SA (2011) Silencing of aphid genes by dsRNA feeding from plants. PLoS One 6: pp. e25709 CrossRef
    37. Price, DR, Gatehouse, JA (2008) RNAi-mediated crop protection against insects. Trends Biotechnol 26: pp. 393-400 CrossRef
    38. Shakesby, AJ, Wallace, IS, Isaacs, HV, Pritchard, J, Roberts, DM, Douglas, AE (2009) A water-specific aquaporin involved in aphid osmoregulation. Insect Biochem Mol Biol 39: pp. 1-10 CrossRef
    39. Siomi, H, Siomi, MC (2009) On the road to reading the RNA-interference code. Nature 457: pp. 396-404 CrossRef
    40. Smith, CM, Belay, T, Stauffer, C, Stary, P, Kubeckova, I, Starkey, S (2004) Identifiaction of Russian wheat aphid (Homoptera: Aphididae) biotypes virulent to the Dn4 resistance gene. J Econ Entomol 97: pp. 112-117 CrossRef
    41. Sternlicht, MD, Werb, Z (2001) How matrix metalloproteinases regulate cell behavior. Annu Rev Cell Dve Bi 17: pp. 463-516 CrossRef
    42. Stoger, E, Willianms, S, Christou, P, Down, RE, Gatehouse, JA (1999) Expression of the insecticidal lectin from snowdrop (Galanthus nivalis agglutinin; GNA) in transgenic wheat plants: effects on predation by the grain aphid Sitobion avenae. Mol Breed 5: pp. 65-73 CrossRef
    43. Taanman, JW, Williams, SL (2001) Assembly of cytochrome c oxidase: what can we learn from patients with cytochrome c oxidase deficiency?. Biochem Soc T 29: pp. 446-451 CrossRef
    44. Tagu, D, Klingler, JP, Moya, A, Simon, JC (2008) Early progress in aphid genomics and consequences for plant-aphid interactions studies. Mol Plant-Microbe Interact 21: pp. 701-708 CrossRef
    45. Terenius, O, Papanicolaou, A, Garbutt, JS, Eleftherianos, I, Huvenne, H, Kanginakudru, S, Albrechtsen, M, An, C, Aymeric, JL, Barthel, A (2011) RNA interference in Lepidoptera: an overview of successful and unsuccessful studies and implications for experimental design. J Insect Physiol 57: pp. 231-245 CrossRef
    46. Tian, H, Peng, H, Yao, Q, Chen, H, Xie, Q, Tang, B, Zhang, W (2009) Developmental control of a lepidopteran pest Spodoptera exigua by ingestion of bacteria expressing dsRNA of a non-midgut gene. PLoS One 4: pp. e6225 CrossRef
    47. Tomoyasu, Y, Miller, SC, Tomita, S, Schoppmeier, M, Grossmann, D, Bucher, G (2008) Exploring systemic RNA interference in insects: a genome-wide survey for RNAi genes in Tribolium. Genome Biol 9: pp. R10 CrossRef
    48. Turner, CT, Davy, MW, MacDiarmid, RM, Plummer, KM, Birch, NP, Newcomb, RD (2006) RNA interference in the light brown apple moth, Epiphyas postvittana (Walker) induced by double-stranded RNA feeding. Insect Mol Biol 15: pp. 383-391 CrossRef
    49. Van Roessel, A.H. Brand (2004) Spreading silence with Sid. Genome Biology, 5 (2004), p. 208Wang CP, Chen Q, Luo K, Zhao HY, Zhang GS, Tlali, RM (2011) Evaluation of resistance in wheat germplasm to the aphids, / Sitobion avenae based on Technique for Order Preference by Similarity to Ideal Solution TOPSIS and cluster methods. Afr J Agric Res 6: 1592鈥?599
    50. Whangbo, JS, Hunter, CP (2008) Environmental RNA interference. Trends Genet 24: pp. 297-305 CrossRef
    51. Whyard, S, Singh, AD, Wong, S (2009) Ingested double-stranded RNAs can act as species-specific insecticides. Insect Biochem Mol Biol 39: pp. 824-832 CrossRef
    52. Williams, RW, Rubin, GM (2002) ARGONAUTE1 is required for efficient RNA interference in Drosophila embryos. Proc Natl Acad Sci U S A 99: pp. 6889-6894 CrossRef
    53. Xia, LQ, Ma, Y, He, Y, Jones, HD (2012) GM wheat development in China: current status and challenges to commercialization. J Exp Bot 63: pp. 1785-1790 CrossRef
    54. Xu, WN, Han, ZJ (2008) Cloning and phylogenetic analysis of sid-1-like genes from aphids. J Insect Sci 8: pp. 1-6 CrossRef
    55. Ye, J, Fang, L, Zheng, HK, Zhang, Y, Chen, J, Zhang, ZJ, Wang, J, Li, ST, Li, RQ, Bolund, L, Wang, J (2006) WEGO: a web tool for plotting GO annotations. Nucleic Acids Res 34: pp. 293-297 CrossRef
    56. Yu, XD, Pickett, J, Ma, Y, Bruce, T, Napier, J, Jones, HD, Xia, LQ (2012) Metabolic engineering of plant-derived (E)-尾-farnesene synthase genes for a novel type of aphid-resistant genetically-modified crop plants. J Integr Plant Biol 54: pp. 282-299 CrossRef
    57. Yu, XD, Wang, GP, Huang, SL, Ma, YZ, Xia, LQ (2014) Engineering plants for aphid resistance: current status and future perspectives. Theor Appl Genet 127: pp. 2065-2083 CrossRef
    58. Zha, WJ, Peng, XX, Chen, RZ, Du, B, Zhu, LL, He, GC (2011) Knockdown of midgut genes by dsRNA-transgenic plant-mediated RNA interference in the hemipteran insect Nilaparvata lugens. PLoS One 6: pp. e20504 CrossRef
    59. Zhang, M, Zhou, Y, Wang, H, Jones, HD, Gao, Q, Wang, DH, Ma, YZ, Xia, LQ (2013) Identifying potential RNAi targets in grain aphid (Sitobion avenae F.) based on transcriptome profiling of its alimentary canal after feeding on wheat plants. BMC Genomics 14: pp. 560 CrossRef
    60. Zhou, X, Wheeler, MM, Oi, FM, Scharf, ME (2008) RNA interference in the termite Reticulitermes flavipes through ingestion of double-stranded RNA. Insect Biochem Mol Biol 38: pp. 805-815 CrossRef
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Life Sciences
    Cell Biology
    Plant Genetics and Genomics
    Microbial Genetics and Genomics
    Biochemistry
    Bioinformatics
    Animal Genetics and Genomics
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1438-7948
文摘
Grain aphid (Sitobion avenae F.) is the most dominant and destructive pest of wheat, which causes significant yield loss of cereal plants each year by inflicting damage both through the direct effects of feeding and by vectoring debilitating plant viruses. In this study, we performed de novo transcriptome sequencing of grain aphid via Roche 454 GS-FLX pyrosequencing. A total of 1,106,696 reads were obtained and assembled into 32,277 unigenes, of which 25,389, 21,635, and 16,211 unigenes matched the Nt, Nr, and Swiss-Prot databases, respectively. Functional annotation of these unigenes revealed not only the presence of genes that encode the key components of RNAi machinery such as Dicer and Argonaute but also the genes encoding the TAR RNA binding protein (TRBP) and the SID-1 protein, which function in assisting the RNA-induced silencing complex (RISC) formation in microRNA (miRNA) pathway and mediating a systemic RNA interference (RNAi) effect though a cellular uptake mechanism. Furthermore, among a set of 66 unigenes selected for a double-stranded RNA (dsRNA) artificial diet assay, four novel effective RNAi targets, which led to high mortality of aphids due to the down-regulation of the expression of the respective target gene, were identified. Moreover, the expansion of systemic RNAi effect in grain aphid was observed by adding the fluorescently labeled dsRNA in an artificial diet assay.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700