用户名: 密码: 验证码:
Whole-Genome Expression Analysis of Human Mesenchymal Stromal Cells Exposed to Ultrasmooth Tantalum vs. Titanium Oxide Surfaces
详细信息    查看全文
  • 作者:Claudia Stiehler (1) (2)
    Cody Bünger (3) (4)
    Rupert W. Overall (2)
    Lo?c Royer (5)
    Michael Schroeder (5)
    Morten Foss (4)
    Flemming Besenbacher (4) (6)
    Mogens Kruh?ffer (7)
    Moustapha Kassem (8) (9)
    Klaus-Peter Günther (1) (2)
    Maik Stiehler (1) (2)
  • 关键词:Cell culture ; Gene expression ; Mesenchymal stem cell ; Osteoblast ; Tantalum ; Titanium ; Biocompatibility ; Cell differentiation ; Pathway analysis ; Cell proliferation ; Oxidative stress ; NRF2 ; EGR1 ; IRF ; 1 ; IRF ; 8 ; NF ; Y ; p53
  • 刊名:Cellular and Molecular Bioengineering
  • 出版年:2013
  • 出版时间:June 2013
  • 年:2013
  • 卷:6
  • 期:2
  • 页码:199-209
  • 全文大小:710KB
  • 参考文献:1. Albrektsson, T., P. I. Branemark, H. A. Hansson, and J. Lindstrom. Osseointegrated titanium implants. Requirements for ensuring a long-lasting, direct bone-to-implant anchorage in man. / Acta Orthop. Scand. 52(2):155-70, 1981. CrossRef
    2. Anselme, K. Osteoblast adhesion on biomaterials. / Biomaterials 21(7):667-81, 2000. CrossRef
    3. Bagno, A., and B. C. Di. Surface treatments and roughness properties of Ti-based biomaterials. / J. Mater. Sci. Mater. Med. 15(9):935-49, 2004. CrossRef
    4. Barbosa, M. A. Corrosion of metallic implants. In: Handbook of Biomaterial Properties, edited by J. Black, and G. Hastings. London: Chapman Hall, 1998, pp. 425-26.
    5. Black, J. Biological performance of tantalum. / Clin. Mater. 16(3):167-73, 1994. CrossRef
    6. Bobyn, J. D., G. J. Stackpool, S. A. Hacking, M. Tanzer, and J. J. Krygier. Characteristics of bone ingrowth and interface mechanics of a new porous tantalum biomaterial. / J. Bone Joint Surg. Br. 81(5):907-14, 1999. CrossRef
    7. Bobyn, J. D., K. K. Toh, S. A. Hacking, M. Tanzer, and J. J. Krygier. Tissue response to porous tantalum acetabular cups: a canine model. / J. Arthroplasty 14(3):347-54, 1999. CrossRef
    8. Bruder, S. P., N. Jaiswal, N. S. Ricalton, J. D. Mosca, K. H. Kraus, and S. Kadiyala. Mesenchymal stem cells in osteobiology and applied bone regeneration. / Clin. Orthop. Relat. Res. 355(Suppl):S247–S256, 1998. CrossRef
    9. Cardonne, S. M., P. Kumar, C. A. Michaluk, and H. D. Schwartz. Tantalum and its alloys. / Int. J. Refract. Met. Hard Mater. 13:187-94, 1995. CrossRef
    10. Dai, M., P. Wang, A. D. Boyd, G. Kostov, B. Athey, E. G. Jones, / et al. Evolving gene/transcript definitions significantly alter the interpretation of GeneChip data. / Nucleic Acids Res. 33(20):e175, 2005. CrossRef
    11. Dennis, Jr., G., B. T. Sherman, D. A. Hosack, J. Yang, W. Gao, H. C. Lane, / et al. DAVID: database for Annotation, Visualization, and Integrated Discovery. / Genome Biol. 4(5):3, 2003. CrossRef
    12. Dornan, D., M. Eckert, M. Wallace, H. Shimizu, E. Ramsay, T. R. Hupp, / et al. Interferon regulatory factor 1 binding to p300 stimulates DNA-dependent acetylation of p53. / Mol. Cell. Biol. 24(22):10083-0098, 2004. CrossRef
    13. Dyrskjot, L., T. Thykjaer, M. Kruhoffer, J. L. Jensen, N. Marcussen, S. Hamilton-Dutoit, / et al. Identifying distinct classes of bladder carcinoma using microarrays. / Nat. Genet. 33(1):90-6, 2003. CrossRef
    14. Einhorn, T. A. The cell and molecular biology of fracture healing. / Clin. Orthop. Relat. Res. 46(355):S7–S21, 1998. CrossRef
    15. Ellisen, L. W., K. D. Ramsayer, C. M. Johannessen, A. Yang, H. Beppu, K. Minda, / et al. REDD1, a developmentally regulated transcriptional target of p63 and p53, links p63 to regulation of reactive oxygen species. / Mol. Cell 10(5):995-005, 2002. CrossRef
    16. Frisbie, C. D. Encyclopedia of Physical Science and Technology, 3rd ed. New York: Academic Press, 2002.
    17. Fukumoto, Y., K. Kaibuchi, Y. Hori, H. Fujioka, S. Araki, T. Ueda, / et al. Molecular cloning and characterization of a novel type of regulatory protein (GDI) for the rho proteins, ras p21-like small GTP-binding proteins. / Oncogene 5(9):1321-328, 1990.
    18. Hall, A. Rho GTPases and the actin cytoskeleton. / Science 279(5350):509-14, 1998. CrossRef
    19. Harris, W. H. Wear and periprosthetic osteolysis: the problem. / Clin. Orthop. Relat. Res. 393:66-0, 2001. CrossRef
    20. Haynesworth, S. E., J. Goshima, V. M. Goldberg, and A. I. Caplan. Characterization of cells with osteogenic potential from human marrow. / Bone 13(1):81-8, 1992. CrossRef
    21. Hemmersam, A. G., M. Foss, J. Chevallier, and F. Besenbacher. Adsorption of fibrinogen on tantalum oxide, titanium oxide and gold studied by the QCM-D technique. / Colloids Surf. B Biointerfaces 43(3-):208-15, 2005. CrossRef
    22. Johnson, P. F., J. J. Bernstein, G. Hunter, W. W. Dawson, and L. L. Hench. An in vitro and in vivo analysis of anodized tantalum capacitive electrodes: corrosion response, physiology, and histology. / J. Biomed. Mater. Res. 11(5):637-56, 1977. CrossRef
    23. Kanehisa, M., S. Goto, M. Hattori, K. F. Aoki-Kinoshita, M. Itoh, S. Kawashima, / et al. From genomics to chemical genomics: new developments in KEGG. / Nucleic Acids Res. 34(Database issue):D354–D357, 2006. CrossRef
    24. Kang, K. W., S. J. Lee, and S. G. Kim. Molecular mechanism of nrf2 activation by oxidative stress. / Antioxid. Redox Signal. 7(11-2):1664-673, 2005. CrossRef
    25. Kato, H., T. Nakamura, S. Nishiguchi, Y. Matsusue, M. Kobayashi, T. Miyazaki, / et al. Bonding of alkali- and heat-treated tantalum implants to bone. / J. Biomed. Mater. Res. 53(1):28-5, 2000. CrossRef
    26. Kioka, N., S. Sakata, T. Kawauchi, T. Amachi, S. K. Akiyama, K. Okazaki, / et al. Vinexin: a novel vinculin-binding protein with multiple SH3 domains enhances actin cytoskeletal organization. / J. Cell Biol. 144(1):59-9, 1999. CrossRef
    27. Laakman, R. W., B. Kaufman, J. S. Han, A. D. Nelson, M. Clampitt, A. M. O’Block, / et al. MR imaging in patients with metallic implants. / Radiology 157(3):711-14, 1985.
    28. Lee, N. K., and T. A. Vilgis. Preferential adsorption of hydrophobic-polar model proteins on patterned surfaces. / Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 67(5 Pt 1):050901, 2003. CrossRef
    29. Leonard, D., M. J. Hart, J. V. Platko, A. Eva, W. Henzel, T. Evans, / et al. The identification and characterization of a GDP-dissociation inhibitor (GDI) for the CDC42Hs protein. / J. Biol. Chem. 267(32):22860-2868, 1992.
    30. Li, H., X. Zou, C. Woo, M. Ding, M. Lind, and C. Bunger. Experimental lumbar spine fusion with novel tantalum-coated carbon fiber implant. / J. Biomed. Mater. Res. B Appl. Biomater. 81(1):194-00, 2007.
    31. Long, M., and H. J. Rack. Titanium alloys in total joint replacement—a materials science perspective. / Biomaterials 19(18):1621-639, 1998. CrossRef
    32. Matys, V., O. V. Kel-Margoulis, E. Fricke, I. Liebich, S. Land, A. Barre-Dirrie, / et al. TRANSFAC and its module TRANSCompel: transcriptional gene regulation in eukaryotes. / Nucleic Acids Res. 34(Database issue):D108–D110, 2006. CrossRef
    33. Mody, N., F. Parhami, T. A. Sarafian, and L. L. Demer. Oxidative stress modulates osteoblastic differentiation of vascular and bone cells. / Free Radic. Biol. Med. 31(4):509-19, 2001. CrossRef
    34. Park, J. B. Biomaterials Science and Engineering. New York: Plenum Press, 1984. CrossRef
    35. Patil, N., K. Lee, and S. B. Goodman. Porous tantalum in hip and knee reconstructive surgery. / J. Biomed. Mater. Res. B Appl. Biomater. 89(1):242-51, 2009.
    36. Pypen, C. M., H. Plenk, Jr., M. F. Ebel, R. Svagera, and J. Wernisch. Characterization of microblasted and reactive ion etched surfaces on the commercially pure metals niobium, tantalum and titanium. / J. Mater. Sci. Mater. Med. 8(12):781-84, 1997. CrossRef
    37. Rechendorff, K., M. B. Hovgaard, J. Chevallier, M. Foss, and F. Besenbacher. Tantalum films with well-controlled roughness grown by oblique incidence deposition. / Appl. Phys. Lett. 87:073105-1-73105-3, 2005. CrossRef
    38. Rechendorff, K., M. B. Hovgaard, M. Foss, V. P. Zhdanov, and F. Besenbacher. Enhancement of protein adsorption induced by surface roughness. / Langmuir 22(26):10885-0888, 2006. CrossRef
    39. Royer, L., M. Reimann, B. Andreopoulos, and M. Schroeder. Unraveling protein networks with power graph analysis. / PLoS Comput. Biol. 4(7):e1000108, 2008. CrossRef
    40. Shin, H., S. Jo, and A. G. Mikos. Biomimetic materials for tissue engineering. / Biomaterials 24(24):4353-364, 2003. CrossRef
    41. Simonsen, J. L., C. Rosada, N. Serakinci, J. Justesen, K. Stenderup, S. I. Rattan, / et al. Telomerase expression extends the proliferative life-span and maintains the osteogenic potential of human bone marrow stromal cells. / Nat. Biotechnol. 20(6):592-96, 2002. CrossRef
    42. Smith, E. P., J. Boyd, G. R. Frank, H. Takahashi, R. M. Cohen, B. Specker, / et al. Estrogen resistance caused by a mutation in the estrogen-receptor gene in a man. / N. Engl. J. Med. 331(16):1056-061, 1994. CrossRef
    43. Stiehler, M., M. Lind, T. Mygind, A. Baatrup, A. Dolatshahi-Pirouz, H. Li, / et al. Morphology, proliferation, and osteogenic differentiation of mesenchymal stem cells cultured on titanium, tantalum, and chromium surfaces. / J. Biomed. Mater. Res. A 86(2):448-58, 2008.
    44. Su, L. F., R. Knoblauch, and M. J. Garabedian. Rho GTPases as modulators of the estrogen receptor transcriptional response. / J. Biol. Chem. 276(5):3231-237, 2001. CrossRef
    45. Thiel, G., and G. Cibelli. Regulation of life and death by the zinc finger transcription factor Egr-1. / J. Cell. Physiol. 193(3):287-92, 2002. CrossRef
    46. Vater, C., P. Kasten, and M. Stiehler. Culture media for the differentiation of mesenchymal stromal cells. / Acta Biomater. 7(22):466-77, 2010.
    47. Wang, J. C., W. D. Yu, H. S. Sandhu, V. Tam, and R. B. Delamarter. A comparison of magnetic resonance and computed tomographic image quality after the implantation of tantalum and titanium spinal instrumentation. / Spine 23(15):1684-688, 1998. CrossRef
    48. www.ncbi.nlm.nih.gov/gene.2010.
    49. www.bioconductor.org.
    50. www.affymetrix.com/estore.
    51. www.ncbi.nlm.nih.gov.
    52. Zhang, B., Y. Zhang, M. C. Dagher, and E. Shacter. Rho GDP dissociation inhibitor protects cancer cells against drug-induced apoptosis. / Cancer Res. 65(14):6054-062, 2005. CrossRef
    53. Zitter, H., and H. Plenk, Jr. The electrochemical behavior of metallic implant materials as an indicator of their biocompatibility. / J. Biomed. Mater. Res. 21(7):881-96, 1987. CrossRef
  • 作者单位:Claudia Stiehler (1) (2)
    Cody Bünger (3) (4)
    Rupert W. Overall (2)
    Lo?c Royer (5)
    Michael Schroeder (5)
    Morten Foss (4)
    Flemming Besenbacher (4) (6)
    Mogens Kruh?ffer (7)
    Moustapha Kassem (8) (9)
    Klaus-Peter Günther (1) (2)
    Maik Stiehler (1) (2)

    1. Department of Orthopaedics and Centre for Translational Bone, Joint and Soft Tissue Research, University Hospital Carl Gustav Carus, Technische Universit?t Dresden, Dresden, Germany
    2. CRTD -Center for Regenerative Therapies Dresden, Technische Universit?t Dresden, Dresden, Germany
    3. Orthopaedic Research Laboratory, Aarhus University Hospital, Aarhus, Denmark
    4. Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus, Denmark
    5. BIOTEC, Technische Universit?t Dresden, Dresden, Germany
    6. Department of Physics and Astronomy, Aarhus University, Aarhus, Denmark
    7. AROS Applied Biotechnology A/S, Aarhus, Denmark
    8. Department of Endocrinology, Odense University Hospital, Odense, Denmark
    9. Stem Cell Unit, College of Medicine, King Saud University, Riyadh, Kingdom of Saudi Arabia
  • ISSN:1865-5033
文摘
Durable osseointegration of metallic bone implants requires that progenitor cells attach, proliferate and differentiate on the implant surface. Previously, we demonstrated superior biocompatibility of human mesenchymal stromal cells (MSCs) cultivated on ultrasmooth tantalum (Ta) as compared to titanium (Ti) surface. The aim of this study was to extend the previous investigation of biocompatibility by monitoring temporal gene expression of MSCs on topographically comparable smooth Ta and Ti surfaces using whole-genome gene expression analysis. Total RNA samples from telomerase-immortalized human MSCs cultivated on plain sputter-coated surfaces of Ta or Ti for 1, 2, 4, and 8?days were hybridized to n?=?16 U133 Plus 2.0 arrays (Affymetrix?). Functional annotation, cluster and pathway analyses were performed. The vast majority of genes were differentially regulated after 4?days of cultivation and genes upregulated by MSCs exposed to Ta and Ti were predominantly related to the processes of differentiation and transcription, respectively. Functional annotation analysis of the 1,000 temporally most significantly regulated genes suggests earlier cellular differentiation on Ta compared to Ti surface. Key genes related to osteogenesis and cell adhesion were upregulated by MSCs exposed to Ta. We further identified differentially regulated candidate transcription factors, e.g., NRF2, EGR1, IRF-1, IRF-8, NF-Y, and p53 as well as relevant signaling pathways, e.g., p53 and mTOR, indicating e.g., differences in the Ta- and Ti-induced oxidative stress reactions at the cell/biomaterial interface. These findings suggest that Ta is a promising material for bone implants.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700