用户名: 密码: 验证码:
Hexagram-like CoS-MoS2 composites with enhanced activity for hydrogen evolution reaction
详细信息    查看全文
  • 作者:Xuan Shen ; Xiaohong Xia ; Weichun Ye ; Yongling Du
  • 关键词:CoS ; MoS2 composites ; Electrodeposition ; Hydrogen evolution reaction
  • 刊名:Journal of Solid State Electrochemistry
  • 出版年:2017
  • 出版时间:February 2017
  • 年:2017
  • 卷:21
  • 期:2
  • 页码:409-417
  • 全文大小:
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Physical Chemistry; Electrochemistry; Energy Storage; Characterization and Evaluation of Materials; Analytical Chemistry; Condensed Matter Physics;
  • 出版者:Springer Berlin Heidelberg
  • ISSN:1433-0768
  • 卷排序:21
文摘
Hexagram-like CoS-MoS2 composites were prepared on indium tin oxide (ITO) conductive glasses via cyclic voltammetry electrodeposition using Co(NO3)2 and (NH4)2MoS2 as precursors and tested for application in hydrogen evolution reaction (HER). The structure of CoS-MoS2 composites was characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), and X-ray photoelectron spectrum (XPS). Electrochemical characterizations indicate that CoS-MoS2 composites exhibit more excellent catalytic activity and stability than MoS2. Compared with pure MoS2, the hexagram-like CoS-MoS2 composites with increased specific surface area improved the density of exposed active sites, and the Co binding S edges in CoS-MoS2 composites promote the number of highly catalytic edge sites and decreased the binding energy △GH. Moreover, the effects of different substrates on the CoS-MoS2 composites were also investigated. Our further understanding of this highly active hydrogen evolution catalyst can facilitate the development of economical electrochemical hydrogen production systems.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700